• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

2つのヤン・バクスター方程式の楕円関数解と楕円的量子群

研究課題

研究課題/領域番号 10740001
研究種目

奨励研究(A)

配分区分補助金
研究分野 代数学
研究機関北海道大学

研究代表者

澁川 陽一  北海道大学, 大学院・理学研究科, 助手 (90241299)

研究期間 (年度) 1998 – 1999
研究課題ステータス 完了 (1999年度)
配分額 *注記
2,000千円 (直接経費: 2,000千円)
1999年度: 900千円 (直接経費: 900千円)
1998年度: 1,100千円 (直接経費: 1,100千円)
キーワード加法定理 / 微分方程式 / Ruijsenaars / Bruschi / Calogero / R作用素 / L作用素 / 楕円関数 / ヤン・バクスター方程式
研究概要

本年度は,昨年度に引き続き,加法定理型の微分方程式であるBruschi-Calogero方程式について,その解の分類に関する研究を行った。Bruschi-Calogero方程式とは次のものである。
(^*) a(x)a'(y)-a'(x)a(y)=(a(x+y)-a(x)a(y))(b(x)-b(y))
ここでaとbを未知関数としている。Bruschi-Calogeroは,この微分方程式の一般的な解析的解として楕円関数解を求め,その退化した解として,三角関数解,有理関数解などをも求めている。次に問題となるのは,この微分方程式の解はBruschi-Calogeroによって得られた解のみしかないのかということである。そこで研究代表者は,この微分方程式の,原点近傍で定義された有理型関数解をすべて求めようと試み,これに成功した。すなわち,本研究によって得られた新たな知見等の成果は次の通りである。
aとbを原点中心のpunctured disk上定義された正則関数とする。関数aとbが微分方程式(^*)を満たすならば,aはC上定義された有理型関数となる。関数aは指数関数,楕円関数,三角関数,有理関数のいずれかで表される。
本研究に関する成果は近い将来,雑誌論文として発表される予定である。また,本研究の成果の口頭発表として,平成11年9月,日本数学会秋季総合分科会無限可積分系セッションにおいて、特別講演を行った。
これを記している現在,本研究の成果を用いて,ヤン・バクスター方程式の解であるR作用素の分類を行おうと試みている。

報告書

(2件)
  • 1999 実績報告書
  • 1998 実績報告書
  • 研究成果

    (1件)

すべて その他

すべて 文献書誌 (1件)

  • [文献書誌] Nariya kAWAZUMI: "The meromorphic solutions of Bruschi-Calogero equation"Publications of RIMS, Kyoto University. 36・1(in press). (2000)

    • 関連する報告書
      1999 実績報告書

URL: 

公開日: 1998-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi