研究概要 |
本年度は,昨年度に引き続き,加法定理型の微分方程式であるBruschi-Calogero方程式について,その解の分類に関する研究を行った。Bruschi-Calogero方程式とは次のものである。 (^*) a(x)a'(y)-a'(x)a(y)=(a(x+y)-a(x)a(y))(b(x)-b(y)) ここでaとbを未知関数としている。Bruschi-Calogeroは,この微分方程式の一般的な解析的解として楕円関数解を求め,その退化した解として,三角関数解,有理関数解などをも求めている。次に問題となるのは,この微分方程式の解はBruschi-Calogeroによって得られた解のみしかないのかということである。そこで研究代表者は,この微分方程式の,原点近傍で定義された有理型関数解をすべて求めようと試み,これに成功した。すなわち,本研究によって得られた新たな知見等の成果は次の通りである。 aとbを原点中心のpunctured disk上定義された正則関数とする。関数aとbが微分方程式(^*)を満たすならば,aはC上定義された有理型関数となる。関数aは指数関数,楕円関数,三角関数,有理関数のいずれかで表される。 本研究に関する成果は近い将来,雑誌論文として発表される予定である。また,本研究の成果の口頭発表として,平成11年9月,日本数学会秋季総合分科会無限可積分系セッションにおいて、特別講演を行った。 これを記している現在,本研究の成果を用いて,ヤン・バクスター方程式の解であるR作用素の分類を行おうと試みている。
|