• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Positivity in Arakelov Geometry

Research Project

Project/Area Number 16K17559
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionShitennoji University (2019)
Kyoto University (2016-2018)

Principal Investigator

Ikoma Hideaki  四天王寺大学, 教育学部, 講師 (90533638)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywordsアラケロフ幾何学 / アデール因子 / 基底条件 / 数論的体積 / 代数幾何学 / ニュートン・オコンコフ凸体 / 代数多様体上の有理点 / 代数学 / 数論的正値性
Outline of Final Research Achievements

In Arakelov geometry, we consider Cartier divisors endowed with adelic Green functions (i.e. adelic Cartier divisors) in order to define systematically the heights of algebraic points on an algebraic variety. Given such an adelic Cartier divisor, we can define the height of an algebraic point as the arithmetic intersection number of the adelic Cartier divisor and the algebraic point, which is similar to the usual intersection number defined for a Cartier divisor and a curve on an algebraic variety. The properties of such a height function are closely related to the positivity properties of the given adelic Cartier divisor. In this research, we introduce a new notion; a ``pair of an adelic Cartier divisor and a base condition''. We prove that the arithmetic volume function defined on the cone of big pairs is differentiable along the directions both of adelic Cartier divisors and of base conditions.

Academic Significance and Societal Importance of the Research Achievements

代数方程式系の有理数解の研究は、数学において最も長い歴史を分野の1つであり、大変難しいテーマの1つです。アラケロフ幾何学は、代数多様体上の有理点の構造を調べるため、このような点の高さをシステマティックに定義する方法を与えてくれます。このような高さ関数の性質を調べるには、考えているアデール因子の数論的体積を調べることが有効ですが、これは計算するのも極めて困難であることが知られています。本研究は、アデール因子の数論的体積の性質をより精緻に調べる手段を与えるため、基底条件の概念とそれに沿った数論的体積関数の微分可能性を確立しました。これらは今後、有理点の分布の問題などに応用されると期待されます。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (20 results)

All 2021 2019 2018 2017 2016 Other

All Int'l Joint Research (2 results) Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (13 results) (of which Int'l Joint Research: 4 results,  Invited: 5 results) Book (1 results)

  • [Int'l Joint Research] IMJ-PRG(フランス)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] IMJ-PRG(フランス)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Adelic Cartier divisors with base conditions and the continuity of volumes2021

    • Author(s)
      Hideaki Ikoma
    • Journal Title

      Kyoto Journal of Mathematics

      Volume: -

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Adelic Cartier divisors with base conditions and the Bonnesen-Diskant-type inequalities2021

    • Author(s)
      Hideaki Ikoma
    • Journal Title

      Tohoku Mathematical Journal

      Volume: -

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On subfiniteness of graded linear series2019

    • Author(s)
      Chen Huayi、Ikoma Hideaki
    • Journal Title

      European Journal of Mathematics

      Volume: 6 Issue: 2 Pages: 367-399

    • DOI

      10.1007/s40879-019-00349-0

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Remarks on the arithmetic restricted volumes and the arithmetic base loci2016

    • Author(s)
      Hideaki Ikoma
    • Journal Title

      Publications of the Research Institute for Mathematical Sciences

      Volume: 52 Issue: 4 Pages: 435-495

    • DOI

      10.4171/prims/187

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Differentiability of the arithmetic volume function along the base conditions2019

    • Author(s)
      Hideaki Ikoma
    • Organizer
      Geometry of arithmetic varieties, Beijing (BICMR)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Differentiability of the arithmetic volume function along the base conditions2019

    • Author(s)
      Hideaki Ikoma
    • Organizer
      Intercity Arakelov Seminar 2019, Kyoto
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Differentiability of the arithmetic volume function along the base conditions2019

    • Author(s)
      Hideaki Ikoma
    • Organizer
      Seminaire de theorie des nombres (IMJ-PRG)
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] On the differentiability of arithmetic volume function2018

    • Author(s)
      生駒英晃
    • Organizer
      京都大学代数幾何セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On the differentiability of arithmetic volume function2018

    • Author(s)
      生駒英晃
    • Organizer
      代数的整数論とその周辺2018
    • Related Report
      2018 Research-status Report
  • [Presentation] Adelic Cartier divisors with base conditions and the Bonnesen-Diskant-type inequalities2017

    • Author(s)
      生駒英晃
    • Organizer
      第16回広島仙台整数論集会
    • Related Report
      2017 Research-status Report
  • [Presentation] Adelic Cartier divisors with base conditions and the Bonnesen-Diskant-type inequalities2017

    • Author(s)
      生駒英晃
    • Organizer
      第11回福岡数論研究集会
    • Related Report
      2017 Research-status Report
  • [Presentation] Adelic Cartier divisors with base conditions and the Bonnesen-Diskant-type inequalities2017

    • Author(s)
      生駒英晃
    • Organizer
      Intercity Seminar on Arakelov Theory (CNU Beijing)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] On the concavity of the arithmetic volumes (poster)2017

    • Author(s)
      生駒英晃
    • Organizer
      日本数学会 異分野・異業種研究交流会 2017
    • Related Report
      2017 Research-status Report
  • [Presentation] Adelic Cartier divisors with base conditions and the Bonnesen-Diskant-type inequalities2017

    • Author(s)
      Hideaki Ikoma
    • Organizer
      Kickoff Symposium: New development of algebraic geometry viewed from theoretical physics
    • Place of Presentation
      京都大学数学教室
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Adelic Cartier divisors with base conditions and the Bonnesen-Diskant-type inequalities2017

    • Author(s)
      Hideaki Ikoma
    • Organizer
      Number Theory Seminar
    • Place of Presentation
      パリ第6大学
    • Related Report
      2016 Research-status Report
  • [Presentation] On the differentiability of arithmetic volumes and the Bonnesen-Diskant-type inequalities2016

    • Author(s)
      Hideaki Ikoma
    • Organizer
      東京理科大学談話会
    • Place of Presentation
      東京理科大学理工学部
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] On an arithmetic analogue of the Bonnesen-Diskant inequality2016

    • Author(s)
      Hideaki Ikoma
    • Organizer
      第4回 K3曲面・エンリケス曲面ワークショップ
    • Place of Presentation
      北海道教育大学札幌駅前サテライト
    • Related Report
      2016 Research-status Report
    • Invited
  • [Book] モーデル‐ファルティングスの定理 : ディオファントス幾何からの完全証明2017

    • Author(s)
      川口 周、森脇 淳、生駒 英晃
    • Total Pages
      186
    • Publisher
      サイエンス社
    • ISBN
      9784781914022
    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi