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Theory Deepening for Practical Applications of Bandit Problem Policies
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In both adversarial and stochastic bandit settings, we formalized problems
that are inspired by practical utility, proposed their efficient and high-performance solution
algorithms, and evaluated them theoretically and experimentally. In the adversarial bandit setting,
we developed an asymptotically optimal algorithm under the condition that at least one arm does not
suffer any loss. In the stochastic setting, we formalized the classification bandit problem, in
which the player decides whether the number of arms with their expected rewards at least a given
threshold is at least a given threshold or not by drawing arms iteratively, and developed the
P-tracking algorithm that is efficient and asymptotically optimal. These results are published in
major peer-reviewed international journals and conference proceedings.
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Table 1
(l) Comparison of L*(K, T, ), the minimax expected number of mistakes, for
variants of the noise-free multi-armed game with K arms and T rounds.
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Table 5 The average stopping times x 1073 of the five algorithms and their 9% d intervals in the si ions based on real dataset. Note that @z, 6y) = (6, —
0.01, 6, +0.01) form’ =0,1,5,10,19
(I(sT ) Policy 6o = 0.06573 6) = 0.05890 05 = 0.04092 619 = 0.03409 619 =0.01144
(m =0) (m=1) (m=4) (m = 10) (m=19)
§=0.01
APTp 149.9+24 622+43 249+59 21.6+3.9 95+17
(1776.1)
UCB 1499 £ 2.4 149.6 £ 6.0 52.5%25 412£21 215+ 1.1
LUCB 1499+ 2.4 123.8+8.8 28.1+£24 193+ 19 9.0+0.8
TS 149924 729+£38 219x14 17.1£13 99+0.7
Ms NAf 724+£3.6 219£14 17.1£1.3 99+0.7
8 =0.001
(2021.0) APTp 174.2+22 66.0 £ 3.4 29.0+6.1 255+4.5 99+19
UCB 1742 +£22 157.4£5.6 56.5+£27 445+24 228+1.2
LUCB 1742 +£22 131.6 £7.7 296+26 214+ 18 92+08
TS 1742 +22 77.1£3.1 229+14 18314 10.6+0.8
Ms NAf 77.0£3.1 229+14 18314 10.6+0.8

For MS, we were not able to measure the stopping time due to the large computation time in the case with m = 0 in which the rejection probability in a posterior distribution of
aloss-mean set approaches to one

[2] Table 5[2] (Real-Time Bidding



dataset provided by iPinYou (Zhang et al. 2014))
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