科学研究費助成事業

平成 29 年 6 月 1 0 日現在

研究成果報告書

機関番号: 12608 研究種目:基盤研究(A)(一般) 研究期間: 2013~2016 課題番号: 25249029 研究課題名(和文)革新的大容量交流モータ可変速駆動システムの研究

研究課題名(英文)Study of innovative high-power ac motor drive systems

研究代表者

赤木 泰文(Akagi, Hirofumi)

東京工業大学・工学院・教授

研究者番号:80126466

交付決定額(研究期間全体):(直接経費) 34,400,000円

研究成果の概要(和文):本研究の目的は,高効率・高性能の革新的大容量交流モータの可変速駆動に関する基盤技術を確立することである。本研究ではモジュラ・マルチレベルDSCCインバータに着目し,そのモータ駆動システムへの実用性を検討した。 本研究では,アーム当たり8台のチョッパセルをカスケード接続した三相400 V,20 kWのDSCCインバータを設計・製作した。このインバータを用いて永久磁石同期電動機(三相360V,75Hz,15kW,6極)と誘導電動機(三相380V,50Hz,15kW,4極)の力行に関する実験を行い,良好な運転特性を確認した。また,分散発電制動を提案 し,安全・迅速な誘導電動機の発電制動を実証した。

研究成果の概要(英文):The aim of this research is to establish a core technology of high-efficiency and high-performance medium-voltage motor drives for large-capacity fans and compressors. From a practical point of view, this research takes up a modular multilevel DSCC inverter used for such motor drives. When the research was initiateted in 2013, no detailed discussions have been made on the driving and braking performance of synchronous and induction motors.

This research has designed, constructed, and tested a 400-V, 20-kW three-phase DSCC inverter consisting of eight cascaded chopper cells per arm. Experimental waveforms of the DSCC-based motor drives show satisfactory performance in adjustable-speed drives of the three-phase permanent magnet six-pole synchronous motor rated at 360 V, 75Hz, and 15 kW, as well as the three-phase four-pole induction motor rated at 380 V, 50 Hz, and 15 kW. Other experimental waveforms of the induction-motor drive provides fast and safe dynamic-braking performance.

研究分野:パワーエレクトロニクス

キーワード: 交流電動機 インバータ パワー半導体デバイス 可変速駆動 発電制動 ディジタル信号処理

1.研究開始当初の背景

電力発電用エネルギー源として,石油・ 石炭 ウラン 天然ガスが注目されている。 近年の日本のエネルギー情勢から,上記の エネルギー源のうち天然ガスの利用が注目 されている。天然ガスを高密度に貯蔵し, 運輸するためには,天然ガスを液化する(液 化天然ガス)必要がある。天然ガスの液化に は、コンプレッサによる圧縮が必須である。 大容量コンプレッサシステムとして、ガス タービンエンジンを利用した方式が採用さ れている。しかしこの方式は,低から中出 力時にガスタービン効率が 20%以下と低 い点に問題がある。この問題を解決するた めに,高圧インバータを用いたモータ可変 速駆動によるシステムの電動化が検討され ている。

液化天然ガス用モータの容量は 10 MW から 100 MW, 交流系統からの受電電圧は 10 数 kV クラスとなる。このような高圧・ 大容量電動機として効率の観点から,高速 同期電動機が使用されている。近年では, 高速・大容量誘導電動機の研究・開発も行 われている。また,電力発電所の同期発電 機や誘導発電機の技術を応用することで, 13 から 25 kV, 100 MW クラスの高圧電動 機が現状の技術で実現可能である。

一方,数 MW から百 MW クラスの高圧 インバータとして,多巻線移相変圧器を使 用するマルチレベルインバータや,サイリ スタを使用する電源転流/負荷電流インバ ータが使用されている。両者ともに,大型・ 大重量の受動素子が必要である点に課題が ある。このため,敷地面積や床重量に制約 がある環境下に同インバータを導入するこ とが困難である。その結果,高圧電動機へ の可変速駆動システムの導入率は 10%以 下と非常に低い。 上記課題を解決可能な次世代の高圧イン バータとして,2003年にモジュラー・マル チレベル DSCC インバータが提案された。 2013年までに,本研究機関を含む5カ国 の研究機関で DSCC インバータを用いた 電動機駆動の実験検証に成功していた。し かし,電動機の駆動・制動特性に関する実 用化を目指した詳細な検討が行われていな かった。

2.研究の目的

上記の研究背景に鑑み、本研究の目的は, 革新的高圧・大容量モータの可変速駆動用 DSCC インバータの基盤技術を確立するこ とである。具体的には,液化天然ガス用コ ンプレッサに使用される誘導電動機と同期 電動機の可変速駆動を想定した DSCC イン バータの制御について学術的に考察し,そ の実験検証を行う。

3.研究の方法

本研究では,以下の項目に注力して研究 を遂行した。400 V, 20 kWのDSCC インバ ータの基本設計を行い,誘導電動機の可変 速駆動を行った。次に,DSCC インバータの 体積を低減可能な誘導電動機の制御法につ いて考案し,従来の制御法に対して 14%の 体積低減効果があることを実験検証した。

続いて,上記の研究成果を踏まえて誘導 電動機の発電制動について検討した。本研 究の発電制動は,DSCC インバータと制動チ ョッパを統合することで達成する。その結 果,制動なしの場合と比較して1/10の時間 で安全に誘導電動機の制動ができることを 実証した。

最後に、高速同期電動機を模擬した 75 Hz 永久磁石同期電動機駆動に関する DSCC イ ンバータの制御系の設計を行った。これに より,全速度領域にわたる良好な同期電動 機の可変速駆動特性を実証した。

図1 DSCC インバータの回路構成

表1 実験定数と制御パラメータ

Rated active power		15 kW
Rated line-to-line rms voltage	$V_{\rm S}$	400 V
Rated dc-link voltage	$V_{\rm dc}$	560 V
Center-tapped inductor	$L_{\rm Z}$	2 mH(5.9%)*
Chopper-cell capacitor	C	6.6 mF
Unit capacitance constant	Н	52 ms
Chopper-cell count per leg	N	16
Rated capacitor voltage	V_C	70 V
Braking resistance	R	10 Ω
Triangle-carrier frequency	f_C	1.5 kHz
Equivalent carrier frequency	Nf_C	24 kHz
*The value in () is an a 400 V 15 kW and 50 Hz have		

*The value in () is on a 400-V, 15-kW, and 50-Hz base.

図2 実験に使用したDSCCインバータの写真

4.研究成果

図1は本研究で設計・製作した三相400V, 20kWのDSCCインバータの構成である。

図3 誘導電動機の可変速駆動実験波形

表 1 に実験定数と制御パラメータを示す。 図 2 は実験で使用した DSCC インバータ (左側)と制動チョッパ(右側)の写真である。 合計 48 個の制動チョッパを同数の DSCC インバータのチョッパにキャブタイヤケー ブルで接続している。

図3は,400 V,15 kW,50 Hz の誘導電 動機の可変速駆動実験波形である。回転速 度 Nm は指令値 N^{*}m に良好に一致している。 コンデンサの電圧波形より,過電圧なく直 流値(70 V)に全速度領域にわたり一定制 御できている。DSCC インバータの体積を 決定するコンデンサの電圧波形より,従来 の制御法と比較してコンデンサ容量を 14%低減できることを表している。

図4は誘導電動機の発電制動実験波形で ある。回転速度が半減する速度より,発電 制動を開始した。その結果,誘導電動機は 0.7 秒で静止した。発電制動なしの場合に は10数秒継続回転する。発電制動両端の 電圧に着目すると,制動チョッパが動作し ていることが確認できる。しかし,その動 作期間は短時間であり,小容量の抵抗が使 用できることを実証している。

図4 誘導電動機の電気制動実験波形

図5 高速同期電動機の可変速駆動実験波形

図 5 は 400 V, 15 kW, 75 Hz の高速同期 電動機の可変速駆動の実験波形である。全 速度領域にわたり安定した可変速駆動が実 現できている。電動機周波数 f はその指令 値 f*に良好に一致している。DSCC インバ ータのコンデンサ電圧に着目すると,その 直流値は一定値 (70 V)に安定に制御でき ている。また,図 3 の 50 Hz 誘導電動機の 実験波形と比較して,コンデンサ電圧変動 幅(peak-to-peak 値)が低減している。同期 電動機駆動時のコンデンサ電圧変動幅を誘 導電動機駆動時の電圧変動幅と同一に設計 する際には,DSCCインバータのコンデン サ容量を半減できることを示しており, DSCCインバータが高速電動機に適してい ることを表している。

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計4件)

[1]Y. Okazaki, H. Matsui, M. M. Muhoro, M. A**k**a<u>qi,</u> Hagiwara and Hirofumi "Capacitor-voltage balancing for а modular multilevel DSCC inverter driving a medium-voltage synchronous motor,' IEEE Transactions on Industry Applications, Vol. 52, No. 5. pp. 4074-4083, Sept./Oct. 2016.(査読あり)

[2]岡崎 佑平,松井 仁志,M.M.Muhoro, <u>萩原 誠</u>,<u>赤木 泰文</u>,「モジュラー・マル チレベル DSCC インバータのコンデンサ電圧 変化幅を最小化する誘導電動機の制御法:二 乗低減トルク負荷への応用」,電気学会論文 誌 D, vol. 136, no. 5, pp. 336-345, 2016 年 5 月(査読あり)

[3]岡崎 佑平,塩田 駿,<u>赤木 泰文</u>,「モ ジュラー・マルチレベル・DSCC インバータを 使用する誘導電動機の発電制動」,電気学会 論文誌 D, vol. 137, no. 2, pp. 175-182, 2017 年3月(査読あり)

他1件

[学会発表](計2件) [1]塩田 駿,岡崎 佑平,<u>赤木 泰文</u>,「モ ジュラー・マルチレベル・DSCC インバータを 用いた高圧誘導電動機の発電制動」,平成28 年電気学会産業応用部門大会,3-1,pp. III-89-94,2016年9月

他1件

```
〔図書〕(計0件)
```

〔産業財産権〕 出願状況(計0件)

取得状況(計0件)

〔その他〕 ホームページ等

6.研究組織

(1)研究代表者
赤木 泰文(AKAGI HIROFUMI)
東京工業大学・工学院・教授
研究者番号: 80126466

(2)研究分担者

萩原 誠(HAGIWARA MAKOTO) 東京工業大学・工学院・准教授 研究者番号:20436710

藤田 英明(FUJITA HIDEAKI) 東京工業大学・工学院・准教授 研究者番号:40238580

(3)連携研究者 なし