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Development of an Upper Limb Rehabilitation Method Based on the Preferred
Direction of Muscle: Support and Quantification by Robotics
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The objective of this study was to construct a robotic rehabilitation method
to restore motor function in stroke survivors. Thus, a motor dysfunction model that considered the
musculoskeletal system of individuals with hemiplegia was developed. This model was used to create a
rehabilitation method based on the preferred direction of muscle, and a robotic system was

constructed to execute a protocol applying it to restore upper limb motor function.
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