研究分担者 |
和久井 道久 大阪大学, 大学院・理学研究科, 助手 (60252574)
佐竹 郁夫 大阪大学, 大学院・理学研究科, 助手 (80243161)
山根 宏之 大阪大学, 大学院・理学研究科, 講師 (10230517)
村上 順 大阪大学, 大学院・理学研究科, 助教授 (90157751)
宇野 勝博 大阪大学, 大学院・理学研究科, 助教授 (70176717)
|
研究概要 |
頂点代数の最も基本的な例である自由ボゾン場のなす頂点代数の共形ベクトルの分類を実行した.頂点代数と共形ベクトルの対は一つの共形場理論を与えるので,自由ボゾン場に由来する共形場理論の分類が実現されたことになる.また,この研究の過程で一般の頂点代数を定義する公理系に関する新しい視点が開かれた.(永友,佐竹,和久井) 共形ベクトルの分類はより基本的な対象であるハイセンベルグベクトルを分類することにより実行されたが,そこでの主要な方法はWickの定理である.Wickの定理を複雑に利用することによりHeisenbergベクトルの分類が可能になった.Heisenbergベクトルの決定は,そのほかにも自由ボゾン頂点代数の自己同型群の決定を可能にした.実際,この分類結果を用いて自己同型群が完全に決定される.(永友,宇野) また,頂点作用素代数は共形場理論を通して低次元多様体の位相不変量と関連しており,有限型不変量と量子不変量に対して普遍的な結び目のKontsevich不変量を用いて,3次元多様体の不変量を構成し,その性質を研究し,また,この不変量に対し,位相的場の量子論を構成するとともに,その応用として,曲面の写像類群の族を構成した.(村上,山根)
|