研究分担者 |
楫 元 早稲田大学, 理工学部, 教授 (70194727)
室谷 義昭 早稲田大学, 理工学部, 教授 (90063718)
小島 清史 早稲田大学, 理工学部, 教授 (30063689)
久保 明達 藤田保健衛生大学, 助教授 (60170023)
小林 孝行 九州工業大学, 工学部, 講師 (50272133)
杉山 由恵 早稲田大学, 理工学部, 助手 (60308210)
清水 扇丈 静岡大学, 工学部, 助教授 (50273165)
檀 和日子 筑波大学, 数学系, 助手 (40251029)
|
配分額 *注記 |
13,700千円 (直接経費: 13,700千円)
1999年度: 4,900千円 (直接経費: 4,900千円)
1998年度: 4,300千円 (直接経費: 4,300千円)
1997年度: 4,500千円 (直接経費: 4,500千円)
|
研究概要 |
(1)3次元非圧縮性粘性流体の運動を記述するNavier-Stokes方程式の外部問題を考えた. 1930年代のJ.Lerayの研究により弱解の存在は知られている. しかしLerayの弱解からは解の定性的な性質は分からなかった. 1950年代初頭にR.Finnにより定常問題に対しphysically reasonable solution(prs)の概念が導入され外力と無限遠方の流速u_∞が小さい場合にその存在と定性的な研究が行われた. Finnのprsの初期摂動に関する安定性と時間無限での定常解への収束を研究することが次の問題となり, L_2枠ではHeywoodにより解決され, その後の数値解析の重要な基礎となっている. しかし, prsはL_2には属さないので, それが属する空間での初期摂動の問題が30年以上問題として残っていた. このたびの研究によりこれを解決した. 方法は外部領域におけるOseen近似を行い, その方程式に関し, 境界近くでのlocal energy decayの最良評価を対応するレゾルベントの原典近くでの分数べきの正則性を求めることで示した. これと全空間でのL_p-L_q評価をcut-off techniqueを用いて合わせ, 最良のL_p-L_q評価を外部領域で求めた. この時, 評価に現れる定数がu_∞に無関係であることが重要である. この評価を基に, prsのL_3空間での初期摂動に関する安定性を示し, Finnの問題を完全に解決した. (2)2次元外部領域ではLerayの弱解は一意であることが知られており, 存在と一意性については3次元と異なり解決されている. しかし, 解の定性的な解明は線形化問題の基本解にlogarighmic singularityが現れるため3次元の場合と違い満足のゆく研究がなされていなかった. 我々はStokes resolventの原点近くでの漸近展開を求め, 境界での反射によりlogarithmic singularityは消滅していることを発見し, 3次元と同様の方法によりStokes半群のL_p-L_q評価(1<q≦p≦∞)を求めた. さらに, これを応用して, 2次元外部領域でのNavier-Stokes方程式の弱解のL_∞ノルムでの時間無限での0への収束の度合いを最良な形で求めた. (3)(1)で開発した方法を拡張し, 3次元圧縮性粘性流体の方程式の線形化問題の解の最良なL_p-L_q評価を求めた. また, これを応用して元の非線形問題の時間無限での解の漸近挙動を最良の形で求めた.
|