• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

ウェブ図の代数的研究

研究課題

研究課題/領域番号 11874007
研究種目

萌芽的研究

配分区分補助金
研究分野 代数学
研究機関早稲田大学 (2001)
大阪大学 (1999-2000)

研究代表者

村上 順  早稲田大学, 理工学部, 教授 (90157751)

研究期間 (年度) 1999 – 2001
研究課題ステータス 完了 (2001年度)
配分額 *注記
2,100千円 (直接経費: 2,100千円)
2001年度: 900千円 (直接経費: 900千円)
2000年度: 600千円 (直接経費: 600千円)
1999年度: 600千円 (直接経費: 600千円)
キーワード3次元多様体 / 結び目 / 量子不変量 / 体積予想 / ウェブ図 / ヤコビ図 / 結び目理論 / 3次元多様化 / 表現論 / 可解リー環 / 絡み目 / 有限型不変量 / 双曲幾何 / 体積
研究概要

本年は京都大学数理解析研究所でプロジェクト「21世紀の低次元トポロジー」が行われ,組織委員の一人として参加した。テーマの一つとして量子不変量があげられており,内外の多数の研究者が集まって活発に交流が行われ,本研究にも多大の貢献があった。本年の成果をまとめると次のようになる。
1.代数的側面について
プロジェクト「21世紀の低次元トポロジー」に参加したD.Thurstonは,ウェブ図のなす代数系に対して「微分」(derivation)を導入し,自明な結び目に対応する元についての非常に基本的な表記法を得た。また,これに附随してこの代数の二種類の積構造から定義される二種類の環構造についての同型対応を構成した。これについて京都大学数理解析研究所での短期共同研究「多重ゼータ値の諸相」で紹介し,その際に,多重ゼータ値の研究でのシャッフル積と調和積の間の関係と対応することが明かとなった。これを受け,多重ゼータ値の理論との関係について研究を開始した。
また,「21世紀の低次元トポロジー」の参加者とウェブ図のなす代数系の呼称について話し合い,今後はヤコビ(Jacobi)図と呼ぶことで合意した。
2.幾何的側面について
ウェブ図と深く関係する量子不変量に対し,「体積予想」と呼ばれる問題がある。これは双曲構造が入る3次元多様体に対し,その体積が量子不変量からある方法で決まるのではないかという予想である。量子不変量には様々な側面があるが,量子6j-記号と呼ばれるものに注目し,体積予想から推察して双曲四面体の体積が量子6j-記号から得られると考え,研究を進めた結果,双曲四面体の体積を表す新たな公式を得た。

報告書

(3件)
  • 2001 実績報告書
  • 2000 実績報告書
  • 1999 実績報告書
  • 研究成果

    (5件)

すべて その他

すべて 文献書誌 (5件)

  • [文献書誌] H.Murakami, J.Murakami: "The colored Jones polynomials and the simplicial volume of a knot"Acta Mathematica. 186. 85-104 (2001)

    • 関連する報告書
      2001 実績報告書
  • [文献書誌] H.Murakami,J.Murakami: "The colored Jones polynomials and the simplicial volume of a knot"Acta Mathematica. (発表予定).

    • 関連する報告書
      2000 実績報告書
  • [文献書誌] 村上順: "結び目と量子群"朝倉書店. 180 (2000)

    • 関連する報告書
      2000 実績報告書
  • [文献書誌] Thang T.Q.Le 他: "A three-manifold invariant via Kontsevich integral"Osaka Journal of Mathematics. 36・2. 365-396 (1999)

    • 関連する報告書
      1999 実績報告書
  • [文献書誌] 大槻知忠 他: "量子不変量:3次元トボロジーと数理物理の遭遇"日本評論社. 152 (1999)

    • 関連する報告書
      1999 実績報告書

URL: 

公開日: 1999-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi