研究分担者 |
田中 和永 早稲田大学, 理工学術院, 教授 (20188288)
山崎 昌男 早稲田大学, 理工学術院, 教授 (20174659)
小林 孝行 佐賀大学, 理工学部, 教授 (50272133)
清水 扇丈 静岡大学, 工学部, 助教授 (50273165)
菱田 俊明 新潟大学, 工学部, 助教授 (60257243)
|
配分額 *注記 |
12,000千円 (直接経費: 12,000千円)
2006年度: 4,000千円 (直接経費: 4,000千円)
2005年度: 4,000千円 (直接経費: 4,000千円)
2004年度: 4,000千円 (直接経費: 4,000千円)
|
研究概要 |
実解析的方法を駆使,L_p空間におけるStokes方程式のスペクトル解析とそのNavier-Stokes方程式への応用についての研究を行った.主な成果つ次のようなものである. 1.非圧縮性粘性流体が一つの物体を通り過ぎるような場合を数学的に記述するOseen方程式に対応する線形化問題のスペクトル解析により,解析半群の生成とその時間無限遠での漸近挙動を示し,それを応用し対応するNavier-Stokes方程式の小さな初期値に対する時間大域解の存在を示した. 2.ビルなどを通り抜ける風の運動などを数学的に定式化したperturbed half spaceにおけるNavier-Stokes方程式の線形化問題として得られるStokes問題の解析半群の生成と時間無限遠での漸近挙動を示した.またそれを応用し対応するNavier-Stokes方程式の小さな初期値に対する時間大域解の存在を示した. 3.有界領域におけるStokes方程式のNeumann問題に対する解の最大正則性原理の証明に成功した.本研究ではWeisのFourier multiplierに関する最新の結果を用いこれまでの研究より簡潔でしかもシャープな結果を得た.この研究で得られた方法論は放物発展方程式の最大正則性原理の証明に広く応用できる画期的なものである.さらにこの原理を応用して表面張力を考えなくて良い場合の自由境界をもつNavier-Stokes流の時間大域的一意存在定理を初期値が小さい場合に示した. 4.無限遠方での流速が零の場合の回転する物体の外側を流れるNavier-Stokes流の数学的解析において,その線形化問題のスペクトル解析を行い,特に解の時間大域的なLp-Lq評価を示した.我々の結果は非常に画期的で有り,この方面の研究を格段に進歩させた.研究方法の特徴的なところは,局所減衰定理を示したところにある.この定理の証明の一つのポイントは,対応するレゾルベント問題の高周波の部分の解析において,作用素を周波数に関して展開し主要部分はセクトリアル作用素になっているということを示したことにある.この解析は従来の研究にはまったく見られない斬新なアイデアであり,7年以上にわたる研究の成果といえる. 5.その他Robinやslip境界条件の下でのStokes方程式のスペクトル解析と対応するNavier-Stokes方程式の解析も行った.また,圧縮性粘性流体に関する拡張も多少を行った.しかし圧縮性粘性流体についての研究の多くは今後の課題である.
|