研究分担者 |
奥田 順一 早稲田大学, 理工学術院, 助手 (80386599)
福島 延久 早稲田大学, 理工学部, 講師
米田 元 早稲田大学, 理工学部, 助教授 (90277848)
村上 順 早稲田大学, 理工学部, 教授 (90157751)
|
研究概要 |
研究の初期の段階においては,多重ゼータ値の間に成立する種々の関係式と1変数多重対数関数のみたす接続関係をMellin変換と逆Mellin変換により対応付けすることを試みた.これにより多重ゼータ値の線型関係式のクラスとしては最も大きいと目される「多重ゼータ値に関する大野関係式」と「1変数多重対数関数の接続関係式(z→1-zとしたときの接続関係式)」の対応が明らかになった.このような具体的なレベルにおける1多重ゼータ値の関係式と多重対数関数の対称性との関係が明らかにされたことは大変意義深い,この結果は、論文「Relations for Multiple Zeta Values and Mellin Transforms of Multiple Polylogarithms, Pub1. RIMS, Kyoto Univ. 40(2004),537-564」として出版された. この研究を契機として,1変数多重対数関数のみたす1変数KZ方程式の対称性(z=0,1,∞の特異点において正規化された基本解の間の変換理論=3次の対称群に同型)を形式的な水準(これは方程式の係数行列を単なる非可換変数と見倣して方程式を解析することを意味する)で記述することを試みた.各特異点近傍における正規化された基本解は,いわゆる,DrinfeldAssociatorにより接続され,基本解同士の接続関係からDrinfeldAsscoiatorのみたす双対関係式と6角形関係式が導かれる.この結果は「The Sum Formula of Multiple Zeta Values and Connection Problem of the Formal Knizhinik-Zamolodchikov Equation, Zeta Functions, Topology and Quantum Physics ed. by T. Aoki et al. Developments in Mathematics 14, Springer(2005)145-170」において公表された. この論文の発表の後,研究の中心は多変数多重対数関数の接続関係を多変数KZ方程式の対称性(正規化された基本解同士の間の変換理論)から導くことを試みている.現在まで,2変数KZ方程式の対称性を一般的な水準で記述することに半ば成功している(基本解についての分解定理,解析性定理,また,Drinfeld Associatorが5角形関係式をみたすことなどを示すことができている.)一つの予想は,「基本解の分解定理から多重対数関数の調和積の関係式が導かれる」である.これらの結果は,2006年9月の日本数学会の秋季総合分科会(於大坂市立大学)における企画特別講演の予稿集で公表されている.
|