Skip to main content
Log in

Use of early phase online vision for grip configuration is modulated according to movement duration in prehension

Experimental Brain Research Aims and scope Submit manuscript

Abstract

Our previous study (Hum Mov Sci 25:349–371, 2006) investigated whether and how online vision in the early phase of movement influences the control of reach-to-grasp movements (movement duration: approximately 1000 ms). We used liquid-crystal shutter goggles to manipulate the duration of available online vision during the movement and specified that online vision during the early phase influences grasping movements. The current study examined the effect of online early phase vision on the grip configuration according to the movement duration and compared it between two different movement durations (approximately 500 and 1000 ms). We found that non-availability of early phase online vision affected the grip configuration (i.e., inducing a larger peak grip aperture) even in the shorter movement duration. The influential period for online vision for grasping control shifts to an earlier time when movement time is shorter (i.e., from approximately 214 to 106 ms after movement onset), indicating a flexible mechanism for grip configuration according to the movement duration and the available online vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. When we mention the condition, the term “movement time” is used. Otherwise, the term “movement duration” is used in more general context.

  2. The current experiment had a 150S condition for both MT500 and MT1000 sessions. We designated the MT500 session as 150S-5 and the MT1000 session as 150S-10.

References

  • Alberts JL, Saling M, Stelmach GE (2002) Alterations in transport path differentially affect temporal and spatial movement parameters. Exp Brain Res 143:417–425

    Article  PubMed  Google Scholar 

  • Berthier NE, Clifton RK, Gullapalli V, McCall DD, Robin DJ (1996) Visual information and object size in the control of reaching. J Mot Behav 28:187–197

    Article  PubMed  Google Scholar 

  • Bootsma RJ, Marteniuk RG, MacKenzie CL, Zaal FT (1994) The speed-accuracy trade-off in manual prehension: effects of movement amplitude, object size and object width on kinematic characteristics. Exp Brain Res 98:535–541

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw MF, Elliott KM (2003) The role of binocular information in the ‘on-line’ control of prehension. Spat Vis 16:295–309

    Article  PubMed  Google Scholar 

  • Brockmole JR, Davoli CC, Abrams RA, Witt JK (2013) The world within reach: effects of hand posture and tool use on visual cognition. Curr Dir Psychol Sci 22:38–44

    Article  Google Scholar 

  • Castiello U, Begliomini C (2008) The cortical control of visually guided grasping. Neuroscientist 14:157–170

    Article  PubMed  Google Scholar 

  • Chapman CS, Goodale MA (2008) Missing in action: the effect of obstacle position and size on avoidance while reaching. Exp Brain Res 191:83–97

    Article  PubMed  Google Scholar 

  • Chapman CS, Goodale MA (2010) Seeing all the obstacles in your way: the effect of visual feedback and visual feedback schedule on obstacle avoidance while reaching. Exp Brain Res 202:363–375

    Article  PubMed  Google Scholar 

  • Chapman CS, Gallivan JP, Culham JC, Goodale MA (2011) Mental blocks: fMRI reveals top-down modulation of early visual cortex when obstacles interfere with grasp planning. Neuropsychologia 49:1703–1717

    Article  PubMed  Google Scholar 

  • Churchill A, Hopkins B, Ronnqvist L, Vogt S (2000) Vision of the hand and environmental context in human prehension. Exp Brain Res 134:81–89

    Article  CAS  PubMed  Google Scholar 

  • Connolly JD, Goodale MA (1999) The role of visual feedback of hand position in the control of manual prehension. Exp Brain Res 125:281–286

    Article  CAS  PubMed  Google Scholar 

  • Desmurget M, Rossetti Y, Prablanc C, Stelmach GE, Jeannerod M (1995) Representation of hand position prior to movement and motor variability. Can J Physiol Pharmacol 73:262–272

    Article  CAS  PubMed  Google Scholar 

  • Elliott D, Hansen S, Grierson LE, Lyons J, Bennett SJ, Hayes SJ (2010) Goal-directed aiming: two components but multiple processes. Psychol Bull 136:1023–1044

    Article  PubMed  Google Scholar 

  • Filimon F (2010) Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing. Neuroscientist 16:388–407

    Article  PubMed  Google Scholar 

  • Fukui T, Inui T (2006) The effect of viewing the moving limb and target object during the early phase of movement on the online control of grasping. Hum Mov Sci 25:349–371

    Article  PubMed  Google Scholar 

  • Fukui T, Inui T (2013) Utilization of visual feedback of the hand according to target view availability in the online control of prehension movements. Hum Mov Sci 32:580–595

    Article  PubMed  Google Scholar 

  • Gaveau V, Pisella L, Priot AE, Fukui T, Rossetti Y, Pélisson D, Prablanc C (2014) Automatic online control of motor adjustments in reaching and grasping. Neuropsychologia 55:25–40

    Article  PubMed  Google Scholar 

  • Gentilucci M, Toni I, Chieffi S, Pavesi G (1994) The role of proprioception in the control of prehension movements: a kinematic study in a peripherally deafferented patient and in normal subjects. Exp Brain Res 99:483–500

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Massey JT (1981) Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. J Neurophysiol 46:725–743

    CAS  PubMed  Google Scholar 

  • Grafton ST (2010) The cognitive neuroscience of prehension: recent developments. Exp Brain Res 204:475–491

    Article  PubMed Central  PubMed  Google Scholar 

  • Heath M, Rival C, Binsted G (2004) Can the motor system resolve a premovement bias in grip aperture? Online analysis of grasping the Muller–Lyer illusion. Exp Brain Res 158:378–384

    Article  PubMed  Google Scholar 

  • Hesse C, Franz VH (2009) Corrective processes in grasping after perturbations of object size. J Mot Behav 41:253–273

    Article  PubMed  Google Scholar 

  • Jakobson LS, Goodale MA (1991) Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Exp Brain Res 86:199–208

    Article  CAS  PubMed  Google Scholar 

  • Jeannerod M (1981) Intersegmental coordination during reaching at natural visual objects. In: Long J, Baddley A (eds) Attention and performance IX. Erlbraum, Hillsdale, pp 153–169

    Google Scholar 

  • Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16:235–254

    Article  CAS  PubMed  Google Scholar 

  • Jeannerod M, Marteniuk RG (1992) Functional characteristics of prehension: From data to artificial neural networks. In: Proteau L, Elliott D (eds) Vision and motor control. Elsevier Science, Amsterdam, pp 197–232

    Chapter  Google Scholar 

  • Komilis E, Pélisson D, Prablanc C (1993) Error processing in pointing at randomly feedback-induced double-step stimuli. J Mot Behav 25:299–308

    Article  CAS  PubMed  Google Scholar 

  • Kudoh N, Hattori M, Numata N, Maruyama K (1997) An analysis of spatiotemporal variability during prehension movements: effects of object size and distance. Exp Brain Res 117:457–464

    Article  CAS  PubMed  Google Scholar 

  • Mon-Williams M, Tresilian JR, Coppard VL, Carson RG (2001) The effect of obstacle position on reach-to-grasp movements. Exp Brain Res 137:497–501

    Article  CAS  PubMed  Google Scholar 

  • Paulignan Y, Jeannerod M, MacKenzie C, Marteniuk R (1991) Selective perturbation of visual input during prehension movements. 2. The effects of changing object size. Exp Brain Res 87:407–420

    Article  CAS  PubMed  Google Scholar 

  • Prablanc C, Echallier JF, Komilis E, Jeannerod M (1979) Optimal response of eye and hand motor systems in pointing at a visual target II. Static and dynamic visual cues in the control of hand movements. Biol Cybern 35:183–187

    Article  CAS  PubMed  Google Scholar 

  • Prablanc C, Desmurget M, Gréa H (2003) Neural control of on-line guidance of hand reaching movements. Prog Brain Res 142:155–170

    Article  PubMed  Google Scholar 

  • Rand MK, Squire LM, Stelmach GE (2006) Effect of speed manipulation on the control of aperture closure during reach-to-grasp movements. Exp Brain Res 174:74–85

    Article  PubMed Central  PubMed  Google Scholar 

  • Rand MK, Lemay M, Squire LM, Shimansky YP, Stelmach GE (2007) Role of vision in aperture closure control during reach-to-grasp movements. Exp Brain Res 181:447–460

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosenbaum DA, Chapman KM, Weigelt M, Weiss DJ, van der Wel R (2012) Cognition, action, and object manipulation. Psychol Bull 138:924–946

    Article  PubMed Central  PubMed  Google Scholar 

  • Rossetti Y, Stelmach GE, Desmurget M, Prablanc C, Jeannerod M (1994) Influence of viewing the static hand prior to movement onset on pointing kinematics and accuracy. Exp Brain Res 101:323–330

    Article  CAS  PubMed  Google Scholar 

  • Ryan TH (1960) Significance tests for multiple comparison of proportions, variances, and other statistics. Psychol Bull 57:318–328

    Article  CAS  PubMed  Google Scholar 

  • Sarlegna FR, Mutha PK (2015) The influence of visual target information on the online control of movements. Vision Res 110:144–154

    Article  PubMed  Google Scholar 

  • Sarlegna F, Blouin J, Bresciani J-P, Bourdin C, Vercher J-L, Gauthier GM (2003) Target and hand position information in the online control of goal-directed arm movements. Exp Brain Res 151:524–535

    Article  PubMed  Google Scholar 

  • Saunders JA, Knill DC (2003) Humans use continuous visual feedback from the hand to control fast reaching movements. Exp Brain Res 152:341–352

    Article  PubMed  Google Scholar 

  • Schettino LF, Adamovich SV, Poizner H (2003) Effects of object shape and visual feedback on hand configuration during grasping. Exp Brain Res 151:158–166

    Article  PubMed  Google Scholar 

  • Sedda A, Monaco S, Bottini G, Goodale MA (2011) Integration of visual and auditory information for hand actions: preliminary evidence for the contribution of natural sounds to grasping. Exp Brain Res 209:365–374

    Article  PubMed  Google Scholar 

  • Smeets JBJ, Brenner E (1999) A new view on grasping. Mot Control 3:237–271

    CAS  Google Scholar 

  • Soechting JF, Lacquaniti F (1983) Modification of trajectory of a pointing movement in response to a change in target location. J Neurophysiol 49:548–564

    CAS  PubMed  Google Scholar 

  • Tresilian JR (1998) Attention in action or obstruction of movement? A kinematic analysis of avoidance behavior in prehension. Exp Brain Res 120:352–368

    Article  CAS  PubMed  Google Scholar 

  • Tubaldi F, Ansuini C, Tirindelli R, Castiello U (2008) The grasping side of odours. PLoS One 3:e1795

    Article  PubMed Central  PubMed  Google Scholar 

  • Turella L, Lingnau A (2014) Neural correlates of grasping. Front Hum Neurosci 8:686

    Article  PubMed Central  PubMed  Google Scholar 

  • van de Kamp C, Bongers RM, Zaal FT (2009) Effects of changing object size during prehension. J Mot Behav 41:427–435

    Article  PubMed  Google Scholar 

  • Wallace SA, Weeks DL (1988) Temporal constraints in the control of prehensile movement. J Mot Behav 20:81–105

    Article  CAS  PubMed  Google Scholar 

  • Whitwell RL, Goodale MA (2009) Updating the programming of a precision grip is a function of recent history of available feedback. Exp Brain Res 194:619–629

    Article  PubMed  Google Scholar 

  • Whitwell RL, Lambert LM, Goodale MA (2008) Grasping future events: explicit knowledge of the availability of visual feedback fails to reliably influence prehension. Exp Brain Res 188:603–611

    Article  PubMed  Google Scholar 

  • Wing AM, Fraser C (1983) The contribution of the thumb to reaching movements. Q J Exp Psychol A 35:297–309

    Article  CAS  PubMed  Google Scholar 

  • Wing AM, Turton A, Fraser C (1986) Grasp size and accuracy of approach in reaching. J Mot Behav 18:245–260

    Article  CAS  PubMed  Google Scholar 

  • Winges SA, Weber DJ, Santello M (2003) The role of vision on hand preshaping during reach to grasp. Exp Brain Res 152:489–498

    Article  PubMed  Google Scholar 

  • Woodworth RS (1899) The accuracy of voluntary movement. Psychol Rev Monogr 3:1–114

    Google Scholar 

  • Zaal FT, Bootsma RJ (1993) Accuracy demands in natural prehension. Hum Mov Sci 12:339–345

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Makoto Wada for a discussion of the data analysis. We also thank Dr. Claude Prablanc and anonymous reviewers for their constructive comments on the manuscript. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Constructive Developmental Science” (25119503) from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Fukui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukui, T., Inui, T. Use of early phase online vision for grip configuration is modulated according to movement duration in prehension. Exp Brain Res 233, 2257–2268 (2015). https://doi.org/10.1007/s00221-015-4295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4295-8

Keywords

Navigation