Skip to main content

Advertisement

Log in

Bone Regeneration of Rat Calvarial Defect by Magnesium Calcium Phosphate Gelatin Scaffolds with or without Bone Morphogenetic Protein-2

Journal of Maxillofacial and Oral Surgery Aims and scope Submit manuscript

Abstract

Regeneration of large bone losses has been achieved with limited success due to either donor site complications in autogenous bone graft or lack of an ideal biomaterial in the case of allografts. Magnesium calcium phosphate-gelatin sponges were prepared with different concentrations of MCP; namely 0, 50 and 90 wt%. Eight mm defects were drilled in the calvaria of 48 male Fischer 344 rats. MCP-gelatin scaffolds containing or without bone morphogenetic protein were placed at the defect site. Animals were sacrificed at 3 and 12 weeks, post-operatively, with evaluation of bone regeneration by using micro CT and histological examinations. Results showed that the combination of BMP-2 and gelatin sponges could provide a slow release system that significantly enhanced bone regeneration at both 3 and 12 weeks in comparison with the non BMP-2-containing 90 wt% MCP-gelatin sponges. The combination of 50 wt% MCP-gelatin sponges and BMP-2 showed significant bone formation at 3 weeks in comparison with the non BMP-2 containing gelatin sponges, indicating that the addition of MCP to the gelatin scaffold had a synergistic advantage in combination with BMP-2. This novel scaffold has shown adequate porosity to allow cell growth, amenability for sterilization, biocompatibility and biodegradability with the ability to provide a slow release system for BMP-2 to enhance bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Luo J, Sun MH, Kang Q, Peng Y, Jiang W, Luu HH, Luo Q, Park JY, Li Y, Haydon RC, He TC (2005) Gene therapy for bone regeneration. Curr Gene Ther 5:167–179

    Article  CAS  PubMed  Google Scholar 

  2. Kurz LT, Garfin SR, Booth JR (1989) Harvesting autogenous iliac bone grafts: a review of complications and techniques. Spine 14:1324–1331

    Article  CAS  PubMed  Google Scholar 

  3. Kawai K, Suzuki S, Tabata Y, Ikada Y, Nishimura Y (2000) Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis. Biomaterials 21:489–499

    Article  CAS  PubMed  Google Scholar 

  4. Straiger MP, Pietak AM, Huadmai J, Kas G (2006) Magnesium and its alloys as orthopedic biomaterials: review. Biomaterials 27:1728

    Article  Google Scholar 

  5. Fujimura K, Bessho K, Kusumoto K, Ogawa Y, Iizuka T (1995) Experimental studies on bone inducing activity of composites of atelopeptide type I collagen as a carrier for ectopic osteoinduction by rhBMP-2. Biochem Biophys Res Commun 208:316–322

    Article  CAS  PubMed  Google Scholar 

  6. Okubo Y, Bessho K, Fujimura K, Kusumoto K, Ogawa Y, Tani Y, Iizuka T (1999) Comparative study of intramuscular and intraskeletal osteogenesis by recombinant human bone morphogenetic protein-2. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87:34–38

    Article  CAS  PubMed  Google Scholar 

  7. Okubo Y, Bessho K, Fujimura K, Kusumoto K, Ogawa Y, Iizuka T (2000) Effect of elcatonin on osteoinduction by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun 269:317–321

    Article  CAS  PubMed  Google Scholar 

  8. Okubo Y, Kusumoto K, Bessho K (2007) Accelerators of osteogenesis by recombinant human bone morphogenetic protein-2. Drug Target Insights 2:55–60

    PubMed Central  PubMed  Google Scholar 

  9. Omura S, Mizuki N, Kawabe R, Ota S, Kobayashi S, Fujita K (1998) A carrier for clinical use of recombinant human BMP-2: dehydrothermally cross-linked composite of fibrillar and denatured atelocollagen sponge. Res Dev 2:129–134

    Google Scholar 

  10. Hussain A, Bessho K, Takahashi K, Tabata Y (2012) Magnesium calcium phosphate as a novel component enhances mechanical/physical properties of gelatin scaffold and osteogenic differentiation of bone marrow mesenchymal stem cells. Tissue Eng Part A 18:768–774

    Article  CAS  PubMed  Google Scholar 

  11. Bessho K, Konishi Y, Kaihara S, Fujimura K, Okubo Y, Iizuka T (2000) Bone induction by escherichia coli-derived recombinant human bone morphogenetic protein-2 compared with Chinese Hamster ovary cell-derived recombinant human bone morphogenetic protein-2. Br J Oral Max Surg 38:645–649

    Article  CAS  Google Scholar 

  12. Li RH, Wozney JM (2001) Delivering on the promise of bone morphogenetic proteins. Trends Biotechnol 7:255–265

    Article  Google Scholar 

  13. Yamamoto M, Ikada Y, Tabata Y (2003) Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials 24:4375–4383

    Article  CAS  PubMed  Google Scholar 

  14. Yamamoto M, Tabata Y, Ikada Y (1998) Ectopic bone formation induced by biodegradable hydrogels incorporating bone morphogenetic protein. J Biomater Sci Polym Ed 5:439–458

    Article  Google Scholar 

  15. Banai S, Haggroth L, Epstein SE, Casscells W (1990) Influence of extracellular magnesium on capillary endothelial cell proliferation and migration. Cir Res 67:645–650

    Article  CAS  Google Scholar 

  16. Webster TJ, Ergun C, Doremus RH, Bizios R (2002) Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion. J Biomed Mater Res 59:312

    Article  CAS  PubMed  Google Scholar 

  17. Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Kubo T, Akagawa Y, Uchida T (2003) Action of FGMGCO3 Ap collagen composite in promoting bone formation. Biomaterials 24:4913

    Article  CAS  PubMed  Google Scholar 

  18. Cho HJ, Cho HJ, Kim HS (2009) Osteopontin: a multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Curr Atheroscler Rep 11:206–213

    Article  CAS  PubMed  Google Scholar 

  19. Montezano AC, Zimmerman D, Yusuf H, Burger D, Chignalia AZ, Wadhera V, Van leeuwen FN, Touyz RM (2010) Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension 56:453–462

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hussain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, A., Takahashi, K., Sonobe, J. et al. Bone Regeneration of Rat Calvarial Defect by Magnesium Calcium Phosphate Gelatin Scaffolds with or without Bone Morphogenetic Protein-2. J. Maxillofac. Oral Surg. 13, 29–35 (2014). https://doi.org/10.1007/s12663-013-0478-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12663-013-0478-7

Keywords

Navigation