Skip to main content

Advertisement

Log in

Reversible capture and release of carbon dioxide by binary system of polyamidine and polyethylene glycol

Polymer Bulletin Aims and scope Submit manuscript

Abstract

CO2 absorbents were prepared from polyethylene glycol and the polyamidines having N,N′-disubstituted amidine structure in the main chain synthesized through acid-catalyzed melt polycondensation of orthoesters and α,ω-diamines. The homogeneous binary mixtures with the polyamidines captured CO2 much more efficiently under CO2 flow than the one with polyethyleneimine. Furthermore, we investigated the CO2 capture and release by the binary mixtures in terms of effects of the volatility and the structure of polyamidines, temperature, and polyethylene glycol. Taking into consideration the results thus obtained, we conducted CO2 capture/release cycles with the CO2 capture step at 40 °C and with the CO2 releasing step at 80 °C in an alternating manner, thereby demonstrating the repeatability of CO2 capture and release by the binary system of the polyamidine and polyethylene glycol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

References

  1. Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT, Moore B III, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296

    Article  CAS  Google Scholar 

  2. Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325:1652–1654

    Article  CAS  Google Scholar 

  3. Hunt AJ, Sin EHK, Marriott R, Clark JH (2010) Generation, capture, and utilization of industrial carbon dioxide. ChemSusChem 3:306–322

    Article  CAS  Google Scholar 

  4. Jones CW (2011) CO2 capture from dilute gases as a component of modern global carbon management. Annu Rev Chem Biomol Eng 2:31–52

    Article  CAS  Google Scholar 

  5. Monastersky R (2013) Global carbon dioxide levels near worrisome milestone. Nature 497:13–14

    Article  CAS  Google Scholar 

  6. D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49:6058–6082

    Article  Google Scholar 

  7. Zhang Z, Yao Z-Z, Xiang S, Chen B (2014) Perspective of microporous metal-organic frameworks for CO2 capture and separation. Energy Environ Sci 7:2868–2899

    Article  CAS  Google Scholar 

  8. Lu X, Jin D, Wei S, Wang Z, An C, Guo W (2015) Strategies to enhance CO2 capture and separation based on engineering absorbent materials. J Mater Chem A 3:12118–12132

    Article  CAS  Google Scholar 

  9. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781

    Article  CAS  Google Scholar 

  10. Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999

    Article  CAS  Google Scholar 

  11. McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR (2012) Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal, äìorganic framework mmen-Mg2(dobpdc). J Am Chem Soc 134:7056–7065

    Article  CAS  Google Scholar 

  12. McDonald TM, Mason JA, Kong X, Bloch ED, Gygi D, Dani A, Crocella V, Giordanino F, Odoh SO, Drisdell WS, Vlaisavljevich B, Dzubak AL, Poloni R, Schnell SK, Planas N, Lee K, Pascal T, Wan LF, Prendergast D, Neaton JB, Smit B, Kortright JB, Gagliardi L, Bordiga S, Reimer JA, Long JR (2015) Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519:303–308

    Article  CAS  Google Scholar 

  13. Tsuda T, Fujiwara T (1992) Polyethyleneimine and macrocyclic polyamine silica gels acting as carbon dioxide absorbents. J Chem Soc Chem Commun 1659–1661

  14. Choi S, Drese JH, Eisenberger PM, Jones CW (2011) Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. Environ Sci Technol 45:2420–2427

    Article  CAS  Google Scholar 

  15. Goeppert A, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR (2011) Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J Am Chem Soc 133:20164–20167

    Article  CAS  Google Scholar 

  16. Goeppert A, Zhang H, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR (2014) Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air. ChemSusChem 7:1386–1397

    Article  CAS  Google Scholar 

  17. Goeppert A, Meth S, Prakash GKS, Olah GA (2010) Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy Environ Sci 3:1949–1960

    Article  CAS  Google Scholar 

  18. Meth S, Goeppert A, Prakash GKS, Olah GA (2012) Silica nanoparticles as supports for regenerable co2 sorbents. Energy Fuels 26:3082–3090

    Article  CAS  Google Scholar 

  19. Al-Azzawi OM, Hofmann CM, Baker GA, Baker SN (2012) Nanosilica-supported polyethoxyamines as low-cost, reversible carbon dioxide sorbents. J Colloid Interface Sci 385:154–159

    Article  CAS  Google Scholar 

  20. Zhu J, Baker SN (2014) Lewis base polymers for modifying sorption and regeneration abilities of amine-based carbon dioxide capture materials. ACS Sustainable Chem Eng 2:2666–2674

    Article  CAS  Google Scholar 

  21. Harlick PJE, Sayari A (2006) Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Ind Eng Chem Res 45:3248–3255

    Article  CAS  Google Scholar 

  22. Kuwahara Y, Kang D-Y, Copeland JR, Brunelli NA, Didas SA, Bollini P, Sievers C, Kamegawa T, Yamashita H, Jones CW (2012) Dramatic enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports. J Am Chem Soc 134:10757–10760

    Article  CAS  Google Scholar 

  23. Araki S, Kiyohara Y, Tanaka S, Miyake Y (2012) Adsorption of carbon dioxide and nitrogen on zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether. J Colloid Interface Sci 388:185–190

    Article  CAS  Google Scholar 

  24. Lu W, Sculley JP, Yuan D, Krishna R, Wei Z, Zhou H-C (2012) Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew Chem Int Ed 51:7480–7484

    Article  CAS  Google Scholar 

  25. Nagai D, Suzuki A, Maki Y, Takeno H (2011) Reversible chain association/dissociation via a CO2 responsive crosslinking/decrosslinking system. Chem Comm 47:8856–8858

    Article  CAS  Google Scholar 

  26. Nagai D, Suzuki A, Kuribayashi T (2011) Synthesis of hydrogels from polyallylamine with carbon dioxide as gellant: development of reversible co2 absorbent. Macromol Rapid Commun 32:404–410

    Article  CAS  Google Scholar 

  27. Han D, Tong X, Boissière O, Zhao Y (2012) General strategy for making CO2-switchable polymers. ACS Macro Lett 1:57–61

    Article  CAS  Google Scholar 

  28. Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y (2012) Reversible absorption of CO2 triggered by phase transition of amine-containing micro- and nanogel particles. J Am Chem Soc 134:18177–18180

    Article  CAS  Google Scholar 

  29. Morse AJ, Armes SP, Thompson KL, Dupin D, Fielding LA, Mills P, Swart R (2013) Novel pickering emulsifiers based on ph-responsive poly(2-(diethylamino)ethyl methacrylate) latexes. Langmuir 29:5466–5475

    Article  CAS  Google Scholar 

  30. Yue M, Hoshino Y, Ohshiro Y, Imamura K, Miura Y (2014) Temperature-responsive microgel films as reversible carbon dioxide absorbents in wet environment. Angew Chem Int Ed 53:2654–2657

    Article  CAS  Google Scholar 

  31. Sakaguchi T, Takeda A, Hashimoto T (2011) Highly gas-permeable silanol-functionalized poly(diphenylacetylene)s: synthesis, characterization, and gas permeation property. Macromolecules 44:6810–6817

    Article  CAS  Google Scholar 

  32. Sakaguchi T, Katsura F, Iwase A, Hashimoto T (2014) CO2-permselective membranes of crosslinked poly(vinyl ether)s bearing oxyethylene chains. Polymer 55:1459–1466

    Article  CAS  Google Scholar 

  33. Sakaguchi T, Tsuzuki T, Masuda T, Hashimoto T (2014) Synthesis, gas permeability, and metal-induced gelation of poly(disubstituted acetylene)s having p, m-dimethoxyphenyl and p, m-dihydroxyphenyl groups. Polymer 55:1977–1983

    Article  CAS  Google Scholar 

  34. Sakaguchi T, Shinoda Y, Hashimoto T (2014) Synthesis and gas permeability of nitrated and aminated poly(diphenylacetylene)s. Polymer 55:6680–6685

    Article  CAS  Google Scholar 

  35. Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927

    Article  CAS  Google Scholar 

  36. Wang C-M, Mahurin SM, Luo H-M, Baker GA, Li H-R, Dai S (2010) Reversible and robust co2 capture by equimolar task-specific ionic liquid-superbase mixtures. Green Chem 12:870–874

    Article  CAS  Google Scholar 

  37. Wang C, Luo H, Luo X, Li H, Dai S (2010) Equimolar co2 capture by imidazolium-based ionic liquids and superbase systems. Green Chem 12:2019–2023

    Article  CAS  Google Scholar 

  38. Endo T, Nagai D, Monma T, Yamaguchi H, Ochiai B (2004) A novel construction of a reversible fixation-release system of carbon dioxide by amidines and their polymers. Macromolecules 37:2007–2009

    Article  CAS  Google Scholar 

  39. Ochiai B, Yokota K, Fujii A, Nagai D, Endo T (2008) Reversible trap-release of CO2 by polymers bearing dbu and dbn moieties. Macromolecules 41:1229–1236

    Article  CAS  Google Scholar 

  40. Nagai D, Endo T (2009) Synthesis of 1 h-quinazoline-2,4-diones from 2-aminobenzonitriles by fixation of carbon dioxide with amidine moiety supported polymer at atmospheric pressure. J Polym Sci, Part A: Polym Chem 47:653–657

    Article  CAS  Google Scholar 

  41. Barkakaty B, Morino K, Sudo A, Endo T (2010) Amidine-mediated delivery of CO2 from gas phase to reaction system for highly efficient synthesis of cyclic carbonates from epoxides. Green Chem 12:42–44

    Article  CAS  Google Scholar 

  42. Heldebrant DJ, Jessop PG, Thomas CA, Eckert CA, Liotta CL (2005) The reaction of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carbon dioxide. J Org Chem 70:5335–5338

    Article  CAS  Google Scholar 

  43. Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL (2005) Green chemistry: reversible nonpolar-to-polar solvent. Nature 436:1102

    Article  CAS  Google Scholar 

  44. Liu Y, Jessop PG, Cunningham M, Eckert CA, Liotta CL (2006) Switchable surfactants. Science 313:958–960

    Article  CAS  Google Scholar 

  45. Heldebrant DJ, Yonker CR, Jessop PG, Phan L (2008) Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy Environ Sci 1:487–493

    Article  CAS  Google Scholar 

  46. Su X, Jessop PG, Cunningham MF (2012) Surfactant-free polymerization forming switchable latexes that can be aggregated and redispersed by CO2 removal and then readdition. Macromolecules 45:666–670

    Article  CAS  Google Scholar 

  47. Zhang Q, Wang W-J, Lu Y, Li B-G, Zhu S (2011) Reversibly coagulatable and redispersible polystyrene latex prepared by emulsion polymerization of styrene containing switchable amidine. Macromolecules 44:6539–6545

    Article  CAS  Google Scholar 

  48. Zhang Q, Yu G, Wang W-J, Yuan H, Li B-G, Zhu S (2012) Preparation of N2/CO2 triggered reversibly coagulatable and redispersible latexes by emulsion polymerization of styrene with a reactive switchable surfactant. Langmuir 28:5940–5946

    Article  CAS  Google Scholar 

  49. Heldebrant DJ, Jessop PG (2003) Liquid poly(ethylene glycol) and supercritical carbon dioxide: a benign biphasic solvent system for use and recycling of homogeneous catalysts. J Am Chem Soc 125:5600–5601

    Article  CAS  Google Scholar 

  50. Li X, Hou M, Zhang Z, Han B, Yang G, Wang X, Zou L (2008) Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chem 10:879–884

    Article  CAS  Google Scholar 

  51. Tanthana J, Chuang SSC (2010) In situ infrared study of the role of peg in stabilizing silica-supported amines for CO2 capture. ChemSusChem 3:957–964

    Article  CAS  Google Scholar 

  52. Yang Z-Z, He L-N, Zhao Y-N, Li B, Yu B (2011) CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy Environ Sci 4:3971–3975

    Article  CAS  Google Scholar 

  53. Furusho Y, Endo T (2013) Capture and release of CO2 by polyamidine. J Polym Sci, Part A: Polym Chem 51:3404–3411

    Article  CAS  Google Scholar 

  54. Sakuragi M, Aoyagi N, Furusho Y, Endo T (2014) Reversible fixation and release of carbon dioxide by binary system consisting of polyethylene glycol and polystyrene-bearing cyclic amidine pendant group. J Polym Sci, Part A: Polym Chem 52:2025–2031

    Article  CAS  Google Scholar 

  55. Jin R-H, Yuan J-J (2009) Biomimetically controlled formation of nanotextured silica/titania films on arbitrary substrates and their tunable surface function. Adv Mater 21:3750–3753

    Article  CAS  Google Scholar 

  56. Matsukizono H, Jin R-H (2012) High-temperature-resistant chiral silica generated on chiral crystalline templates at neutral ph and ambient conditions. Angew Chem Int Ed 51:5862–5865

    Article  CAS  Google Scholar 

  57. Pirrung FOH, Loen EM, Noordam A (2002) Hyperbranched polymers as a novel class of pigment dispersants. Macromol Symp 187:683–693

    Article  CAS  Google Scholar 

  58. Thunemann AF (2002) Polyelectrolyte-surfactant complexes (synthesis, structure and materials aspects). Prog Polym Sci 27:1473–1572

    Article  CAS  Google Scholar 

  59. Böhme F, Klinger C, Komber H, Haubler L, Jehnichen D (1998) Synthesis and properties of polyamidines. J Polym Sci, Part A: Polym Chem 36:929–938

    Article  Google Scholar 

  60. Böhme F, Klinger C, Bellmann C (2001) Surface properties of polyamidines. Colloids Surf A 189:21–27

    Article  Google Scholar 

  61. Tenkovtsev AV, Yakimansky AV, Dudkina MM, Lukoshkin VV, Komber H, Häussler L, Böhme F (2001) Ionic complexes of bis(hydroxyarylidene)alkanones with strong polymeric bases as a new class of third-order nonlinear optical chromophores. Macromolecules 34:7100–7107

    Article  CAS  Google Scholar 

  62. Sharavanan K, Komber H, Böhme F (2002) Synthesis and properties of aliphatic polyacetamidines. Macromol Chem Phys 203:1852–1858

    Article  CAS  Google Scholar 

  63. Xu F, Sun J, Shen Q (2002) Samarium diiodide promoted synthesis of N, N’-disubstituted amidines. Tetrahedron Lett 43:1867–1869

    Article  CAS  Google Scholar 

  64. The pKa values reported for N,N′-diethylacetamidine and N,N′-diethylbenzamidine in aqueous solutions are 13.08 and 12.49, respectively (By calculations using Advance Chemistry Development (ACD/Laboratories) Software (v11.02, SciFinder database))

  65. Tanaka Y, Katagiri H, Furusho Y, Yashima E (2005) A modular strategy to artificial double helices. Angew Chem Int Ed 44:3867–3870

    Article  CAS  Google Scholar 

  66. Ikeda M, Furusho Y, Okoshi K, Tanahara S, Maeda K, Nishino S, Mori T, Yashima E (2006) A luminescent poly(phenylenevinylene)-amylose composite with supramolecular liquid crystallinity. Angew Chem Int Ed 45:6491–6495

    Article  CAS  Google Scholar 

  67. Katagiri H, Tanaka Y, Furusho Y, Yashima E (2007) Multicomponent cylindrical assemblies driven by amidinium-carboxylate salt-bridge formation. Angew Chem Int Ed 46:2435–2439

    Article  CAS  Google Scholar 

  68. Nakatani Y, Furusho Y, Yashima E (2010) Amidinium carboxylate salt bridges as a recognition motif for mechanically interlocked molecules: synthesis of an optically active [2]catenane and control of its structure. Angew Chem Int Ed 49:5463–5467

    Article  CAS  Google Scholar 

  69. Yamada H, Wu Z-Q, Furusho Y, Yashima E (2012) Thermodynamic and kinetic stabilities of complementary double helices utilizing amidinium, äìcarboxylate salt bridges. J Am Chem Soc 134:9506–9520

    Article  CAS  Google Scholar 

  70. Furusho Y, Endo T (2014) Supramolecular polymer gels formed from carboxy-terminated telechelic polybutadiene and polyamidine through amidinium-carboxylate salt bridge. J Polym Sci, Part A: Polym Chem 52:1815–1824

    Article  CAS  Google Scholar 

  71. Sakuragi M, Aoyagi N, Furusho Y, Endo T (2016) Supramolecular polymer gels from polystyrene bearing cyclic amidine group and acrylic acid/n-butyl acrylate copolymers. J Polym Sci, Part A: Polym Chem 54:765–770

    Article  CAS  Google Scholar 

  72. Furusho Y, Endo T, Higaki K, Kaetsu K, Higaki Y, Kojio K, Takahara A (2016) Supramolecular network polymers formed from polyamidine and carboxy-terminated telechelic poly(n-butyl acrylate) via amidinium-carboxylate salt bridges. J Polym Sci, Part A: Polym Chem 54:2148–2155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 26410102 and Asahi Glass Foundation. The authors thank Dr. Yasuhiro Ishida at RIKEN for his help in rheological measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshio Furusho or Takeshi Endo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furusho, Y., Endo, T. Reversible capture and release of carbon dioxide by binary system of polyamidine and polyethylene glycol. Polym. Bull. 74, 1207–1219 (2017). https://doi.org/10.1007/s00289-016-1772-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1772-6

Keywords

Navigation