科学研究費補助金研究成果報告書

平成23年6月10日現在

機関番号:82626 研究種目:特定領域研究 研究期間:2007~2010 課題番号:19048030 研究課題名(和文) シリコンベース素子を用いたスピン注入効率の最適化

研究課題名(英文) Development of Si-based Spintronic Devices

研究代表者

秋永 広幸 (AKINAGA HIROYUKI) 独立行政法人産業技術総合研究所・ナノ電子デバイス研究センター・副研究センター長 研究者番号:90221712

研究成果の概要(和文):

スピントロニクスとシリコンテクノロジーとの融合を推進するため、シリコンベース強磁性体の開発、強磁性体金属/シリコンヘテロ構造におけるスピン偏極電子注入の実証を目指した。 その結果、γ-Fe4N が高いスピン偏極度(0.59)と大きな磁気モーメント(約 2.45μβ/Fe)を持つこ とを実験的に明らかにし、Fe3Si/CaF2エピタキシャル接合からなる強磁性共鳴トンネルダイオ ードの動作実証にも成功した。

研究成果の概要(英文):

To promote integration of 'spintronics' and 'the silicon technology', we are focusing on the actualization of a highly effective spin-injection in the silicon-based device with the aims of "Development of silicon-based ferromagnets", "Demonstration of the spin-injection in ferromagnetic metal / silicon heterostructures". We have succeeded in showing that γ '-Fe₄N possesses the high spin polarization (0.59) and the large magnetic moment (2.45 μ B / Fe). The successful operation of epitaxial CaF₂/ Fe₃Si / CaF₂ ferromagnetic resonant tunneling diode was also demonstrated.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2007年度	7, 300, 000	0	7, 300, 000
2008年度	9, 200, 000	0	9, 200, 000
2009年度	9, 200, 000	0	9, 200, 000
2010年度	7, 300, 000	0	7, 300, 000
年度			
総計	33,000,000	0	33, 000, 000

研究分野:ナノエレクトロニクス

科研費の分科・細目:

キーワード:MBE/エピタキシャル、磁性、スピンエレクトロニクス、ナノ材料、半導体物性

1. 研究開始当初の背景

研究開始当初、金属系スピントロニクス研 究分野と半導体系スピントロニクス研究分 野の分野交流が始まったばかりであった。ま た、半導体スピントロニクス分野においても、 活用されている材料は化合物半導体ばかり であった。その理由は、Fe, Co, Ni 等主な強 磁性体金属の薄膜成長が、格子定数の観点から整合性の高い GaAs をはじめとする III-V 族化合物半導体上で行われていたこと、また、 VI 族半導体は磁性元素との反応性が強すぎ てドーピングを試みても容易に合金化した してしまうこと等であった。即ち、本研究課 題で取り上げたシリコンテクノロジーとス ピントロニクスとの融合は、情報処理回路で 実用化されている半導体技術の主たる材料 系が化合物半導体ではなくシリコンである という観点から大いに期待されてはいたも のの、技術的課題が多く実行に移されていな かった。

2. 研究の目的

本研究課題では、スピントロニクスとシリ コンテクノロジーとの融合を推進するため、 シリコンベース素子を用いたスピン注入効 率の最適化に焦点を絞り、シリコンベース強 磁性体の開発、強磁性体金属/シリコンベース強 低能の開発、強磁性体金属/シリコンベテ ロ構造におけるスピン偏極電子注入の実証、 スピン流を用いたシリコンベースデバイス 機能の実証を目指して研究開発を行うこと とした。スピントロニクスをシリコンベース 半導体テクノロジーに適用し、さらにプロト タイプデバイスを作製することによってそ の技術的課題を抽出することを当研究の目 的とした。

3.研究の方法

当研究課題の目的を達成するために、以下 の具体的な研究手段を講じた。

(1) シリコンあるいはシリコンカーバイドな ど IV 族半導体に遷移金属をドーピングする 技術を開発し、それら IV 族半導体そのもの をスピン偏極電子源とすることができるか どうかを調べる。

(2) 強磁性体金属とシリコンとの界面に絶縁 体薄膜を導入する技術を開発し,熱的に安定 な MIS 接合を作製するとともに、トンネル 現象を用いたスピン偏極電子注入を実現す る。

(3)(2)番にて開発した MIS 接合を用いて,そのスピン注入効率を最大・最適化するとともに、シリコンベース共鳴トンネルトランジスタやスピン発光素子等に適用し、素子特性に与えるスピン依存現象の解析と技術的課題の抽出を行う。

これらを通じて、beyondCMOS 世代を担う ナノエレクトロニクス研究開発の種と、強磁 性体金属からなる各種ストレージデバイス の微細化を進める上で必要不可欠なシリコ ンベース半導体素子との接合に関する学 理・技術に関する現実的知見を得ることを目 指すこととした。

4. 研究成果

(1) SiC ベース強磁性体作製の試み

熱拡散及びイオン注入によってシリコン ベース強磁性半導体の合成を目指した。注目 した材料は、炭化シリコン(4H・, 3C-SiC)で ある。この系では、理論的に強磁性体になる 可能性が指摘されている。4H-SiC では、Mn が格子間位置に入ってしまい、強磁性シグナ ルの観測には至らなかった。一方、3C-SiC においては、Siを Mn が置換していることが 実験的に確認され、強磁性的な振る舞いも観 測されたが、その 3C-(Si,Mn)C が強磁性を示 しているか否かについての確証には至らな かった。

図 1、3C-(Si,Mn)C で観測された強磁性 的振る舞い。磁場は試料薄膜面に垂直に 印加。

(2) Fe/Si 界面の極微酸化膜が Fe 磁気特性に 与える影響【当初予期せぬ成果】

数十 nm の Fe 薄膜を Si 基板上に作製し た際、温度によって符号を変える極めて特異 な交換結合が Fe 薄膜の厚みや純度、また、 成膜直前の Si 基板の前処理条件を変え、この 交換結合の大きさに与える影響を詳細に調 べた結果、Si 基板上に存在する自然酸化膜(膜 厚 1nm 程度)が Fe と反応することによって 交換結合の起源となっているのではないか ということが明らかになった。

図 2、自然酸化膜が存在する Si 基板に成 膜した Fe 薄膜の断面透過型電子顕微鏡 像。この薄膜は、2 K で 10 Oe の負の交 換結合磁界を示した。

本成果は、当初研究計画にはなく、予備的 な実験の過程で得られたものであった。しか しながら、「スピントロニクスをシリコンベ ース半導体テクノロジーに適用し、さらにプ ロトタイプデバイスを作製することによっ てその技術的課題を抽出する」という本研究 課題の目的に対して、極めて直接的な知見を 与えるものなので、本報告書に記載した。 (3) γ'-Fe₄N 薄膜成長とその物性評価

γ'-Fe4N は Si 基板との格子不整合率が 1.3%と小さく、また、理論計算から電気伝導 度のスピン分極率が高いと期待される材料 である。しかし、磁化曲線から算出した γ'-Fe₄N 薄膜の飽和磁化の大きさが、成長基 板との格子不整合率の減少にしたがって増 大するとの論文がもあり、格子整合した LaAlO₃(LAO)(001)基板上に作製したγ'-Fe4N 薄膜では、Fe原子1個当たりで2.9 µBまで増 大したと報告されている。この値は理論計算 で期待される結果の 2.59 μвを大きく上回り、 磁気モーメントが増大する根拠も説明が無 い。さらに、薄膜試料の体積算出時の誤差も 考えられるため、信憑性に乏しいと考えられ る。このように、γ-Fe4N は強磁性体の最も 基本的な物性である、磁気モーメントの値に 関して不明確な点が残っている。そこで、高 品質な薄膜成長を行い、実験的にスピン偏極 率および磁気モーメントを評価した。

固体 Fe およびNH₃を用いたMBE法により、 γ -Fe₄Nエピタキシャル膜を MgO 基板上に形 成し、点接触アンドレーエフ反射測定から、 実験的にスピン偏極度を評価した。図 3 およ び 4 は、Nb 針/Fe₄N 薄膜コンタクトを用い て得られた γ -Fe₄N および α -Fe それぞれのコ ンダクタンス曲線である。この図より、7.8 K にてスピン偏極率は 0.59 となり、同じ温度に おける Fe のスピン偏極度 0.49 よりも高い値 であることを明らかにした。

図 3、γ-Fe4N のコンダクタンス曲線。

図 4、α-Fe のコンダクタンス曲線。

次に、X 線磁気円二色性(XMCD)特性から 磁気モーメントを算出した。 γ ·Fe4N との格 子不整合率が 0%の LAO(001)基板と、格子不 整合率 11%の MgO(001)基板上に、MBE 法 により、Au/(3 nm)/ γ ·Fe4N (10 nm)/ LAO(001)、Au(3 nm)/ γ ·Fe4N (10 nm)/ MgO(001)をエピタキシャル成長した。Au は、 γ ·Fe4N 膜の酸化を防ぐために堆積した。 逆格子マッピング XRD の結果から、これら の試料には格子歪みは存在せず、単相の Fe4N 薄膜のエピタキシャル成長に成功した ことが示された(図 5)。

図 6 は、LAO 基板および MgO 基板上にエ ピタキシャル成長した Au キャップ付き γ -Fe4N の 300K における XMCD スペクトル である。外部磁場を 3T 面直方向に印加した 状態で、磁化が飽和していることを確認して いる。磁気光学総和則の適用により $M_{\rm S}$ を算 出した結果、Fe 原子当たり約 2.45 $\mu_{\rm B}$ となっ た。成長基板の違いによる差が無いことから、 $M_{\rm S}$ の大きさは格子不整合率の大きさに依存 しないといえる。また、この値は α -Fe の 2.2 $\mu_{\rm B}$ に比べて十分に大きいことも明らかにな った。

図 5、STO および MgO 基板上にエピタ キシャル成長したγ-Fe₄N 膜の断面 TEM像。

図 6、 γ '-Fe₄NのXMCD スペクトル。

(4) CaF₂/Fe₃Si/CaF₂ 強磁性共鳴トンネルダ イオード

強磁性金属 FeaSi と絶縁体 CaF。は、 Si(111) 基板上にエピタキシャル成長が可能 な材料であり、また、Fe₃Si のフェルミ準位 から CaF2の障壁高さは 2.5eV である。この 値は半導体ヘテロ構造に比較して格段に大 きく、これらのヘテロ構造を用いた強磁性共 鳴トンネルダイオード(FM-RTD) では、室温 で動作可能なスピンフィルターが形成でき ると考えられる。まず、n+-Si(111)基板上に CaF₂(5nm)/Fe₃Si(4nm)/CaF₂(5nm)ヘテロ接 合からなる2重障壁型の FM-RTD を形成し 電流電圧特性に現れる微分負性抵抗から、量 子化準位の存在を確認することを試みた。図 7に、フォトリソグラフィーと選択エッチン グにより作製した直径 6µm の FM-RTD の電 流電圧特性の例を示す。ここで、n+-Si(111) 基板から電子を注入する向きを正バイアス とする。図に示す通り、Si 基板側から電子を 注入する際に、明瞭な微分負性抵抗(NDR)が 室温で得られた。また、NDR のピーク・バ レー比は1000に達した。

図 7、室温で測定した FM-RTD の電 流電圧特性の例。n⁺-Si(111)基板から FM-RTD に電子を注入する向きを正 バイアスとする。

しかし、電流電圧特性の再現性が悪く、室 温でNDRを発現するFM-RTDの数が極端に 少ないという問題があった。これは、試料内 に発生したピンホールに起因するリーク電 流によると考えれた。そこで、FM-RTDの微 細化を行った。具体的には、Si(111)基板を SiO₂ 膜で覆い、200nmの円形領域のみ Si(111)面を露出して、その部分にFM-RTD を成長する Local-Epitaxy 法による低温 MBE 法である。このような方法で形成した FM-RTD では、作製した約4割の RTD で、 電流電圧特性に明瞭な NDR が室温で得られ るまで、特性が向上した。さらに、量子井戸 の膜厚を 4nm、5nm、8nm と系統的に変え た試料を作製し、NDR が現れる電圧が、量 子井戸膜厚 d の2 乗に反比例するとの結果を 得た(図 8)。以上の結果から、得られた NDR は共鳴トンネルによると言える。

- 図8、共鳴電圧間隔の量子井戸膜厚依存。
- 5. 主な発表論文等

〔雑誌論文〕(計 22 件)

- K. Ito, G. H. Lee, K. Harada, M. Suzuno, <u>T. Suemasu</u>, Y. Takeda, Y. Saitoh, M. Ye, A. Kimura, and <u>H. Akinaga</u>," Spin and orbital magnetic momonets of molecular beam epitaxy γ'-Fe₄N films on LaAl3O(001) and MgO(001) substrates by x-ray magnetic circular dichroism," Applied Physics Letters, 査読有, **98**, 102507 (2011).
- ② K. Ito, G. H. Lee, M. Suzuno, <u>H. Akinaga</u>, and <u>T. Suemasu</u>, "Molecular beam epitaxy of ferromagnetic γ'-Fe₄N thin films on LaAlO₃(100), SrTiO₃(100) and MgO(100) substrates," Journal of Crystal Growth, 査読有, **266**, 012091 (2011).
- ③ K. Harada, K.S. Makabe, <u>H. Akinaga</u>, and <u>T. Suemasu</u>, "Room temperature magnetoresistance in Fe₃Si/CaF₂/Fe₃Si MTJ epitaxially grown on Si(111)," Journal of Physics: Conference Series, 査読有, 266, 012088 (2011).
- ④ K. Harada, K. S. Makabe, <u>H. Akinaga</u>, and <u>T. Suemasu</u>, "Magnetoresistance characteristics of Fe₃Si/CaF₂/Fe₃Si heterostructures grown on Si(111) by molecular beam epitaxy," Physics Procedia, 査読有, **11**, 15 (2011).
- (5) K. S. Makabe, M. Suzuno, K. Harada, <u>H. Akinaga</u>, and <u>T. Suemasu</u>," Improved Reproducibility in CaF₂/Fe₃Si/CaF₂ Ferromagnetic Resonant Tunneling Diodes on Si(111) Substrates by Selected-Area Molecular Beam Epitaxy," Japanese Journal

of Applied Physics, 査読有, **49**, 060212 (2010).

- ⑥ K. Sadakuni, T. Harianto, <u>H. Akinaga</u> and <u>T. Suemasu</u>, "CaF₂/Fe₃Si/CaF₂ Ferromagnetic Resonant Tunneling Diodes on Si(111) by Molecular Beam Epitaxy," Applied Physics Express, 査読有, 2, 063006 (2009).
- ⑦ A. Narahara, K. Ito, <u>T. Suemasu</u>, Y. K. Takahashi, A. Ranajikanth and K. Hono,
 "Spin polarization of Fe4N thin films determined by point-contact Andreev reflection," Applied Physics Letters, 査読有,
 94, 202502 (2009).
- ⑧ G.S. Song, M. Kobayashi, J. Hwang, T. Kataoka, M. Takizawa, A. Fujimori, T. Ohkochi, Y. Takeda, T. Okane, Y. Saitoh, H. Yamagami, F. Takano, and <u>H. Akinaga</u>, "Soft X-ray Absorption and Photoemission Studies of Ferromagnetic Mn-Implanted 3C-SiC", Japanese Journal of Applied Physics, 査読 有, **47**, 7113 (2008).
- ⑨ T. Harianto, K. Sadakuni, <u>H. Akinaga</u>, and <u>T. Suemasu</u>, "Fabrication and Current–Voltage Characteristics of Fe₃Si/CaF₂/Fe₃Si Magnetic Tunnel Junction," Japanese Journal of Applied Physics, 査読有, **47**, 6310 (2008).
- W. Wang, F. Takano, M. Takenaka, <u>H. Akinaga</u>, and H. Ofuchi "Anomalous temperature-dependent exchange-bias in Fe films deposited on Si substrates with the native oxide layer", Journal of Applied Physics, 査読有, **103**, 093914 (2008).
- F. Takano, W. Wang, <u>H. Akinaga</u>, H. Ofuchi, S. Hishiki, and T. Ohshima, "Characterization of Mn-doped 3C-SiC prepared by ion implantation", Jornal of Applied Physics, 査読有, **101**, 09N510 (2007).
- W. Wang, F. Takano, <u>H. Akinaga</u>, and H. Ofuchi, "Structural, magnetic and magnetotransport properties of Mn-Si films synthesized on 4H-SiC(0001) wafer", Physical Review B, 査読有, **75**, 165323 (2007).

〔学会発表〕(計 45 件)

- K. Ito, G.H. Lee, K. Harada, M. Suzuno, Mao Ye, <u>T. Suemasu</u>, A. Kimura, and <u>H.</u> <u>Akinaga</u>, "XMCD measurement of γ'-Fe₄N thin films on LAO(001) and MgO(001) substrates by molecular beam epitaxy," AD-07, April 26, 2011, Taipei.
- ② <u>H. Akinaga</u>, H. Shima, K. Sadakuni-Makabe, K. Harada, K. Itoh, and <u>T. Suemasu</u>, "Spintronic Materials and the Application to Si-based Devices (INVITED)", International

Conference of AUMS, Dec. 6, 2010, Jeju Island, Korea.

- ③ K. Sadakuni-Makabe, M. Suzuno, K. Harada, <u>H. Akinaga</u>, and <u>T. Suemasu</u>, "Fabrication of Fe₃Si/CaF₂ Heterostructures Ferromagnetic Resonant Tunneling Diode by Selected-Area Molecular Beam Epitaxy," APAC Silicide 2010, 25-AM-IV-3, July 25, 2010, Tsukuba.
- ④ K. Harada, K. M. Sadakuni, M. Suzuno, H. T. Suemasu, and Akinaga, Room magnetoresistance temperature in Fe₃Si/CaF₂/Fe₃Si MTJ epitaxially grown on Si(111)," International Symposium on Advanced Magnetic Materials and Applications, PE-11, July 13, 2010, Sendai.
- (5) K. Sadakuni-Makabe, M. Suzuno, K. Harada, <u>H. Akinaga</u>, and <u>T. Suemasu</u>, "CaF₂/Fe₃Si/ CaF₂ heterostructures resonant tunneling diodes on Si(111) by selected-area molecular beam epitaxy," International Symposium on Advanced Magnetic Materials and Applications SB-04, July 16, 2010, Sendai.
- (6) K. Ito, A. Narahara, <u>H. Akinaga</u> and <u>T. Suemasu</u>, "Molecular beam epitaxy and magnetoresistance in Fe₄N/MgO/Fe₄N magnetic tunnel junction," 18th International Conference on Electronic Properties of Two-Dimensional Systems, Mo-eP82, July 20, 2009, Kobe.
- K. Sadakuni, T. Harianto, <u>H. Akinaga and T. Suemasu</u>, "Fabrication of Fe₃Si/CaF₂/Fe₃Si ferromagnetic resonant tunneling diodes on Si(111) by molecular beam epitaxy," 18th International Conference on Electronic Properties of Two-Dimensional Systems, Tu-eP30, July 21, 2009, Kobe.
- (8) <u>H. Akinaga</u>, F. Tanano, H. Shima, and <u>T. Suemasu</u>, "Development of Silicon-based Spintronic Materials and Devices (INVITED)", Asian Magnetic Conference 2008, Dec.12, 2008, Busan, Korea.

6. 研究組織

(1)研究代表者

秋永 広幸 (AKINAGA HIROYUKI)
独立行政法人産業技術総合研究所・ナノ電
子デバイス研究センター・副研究センター
長
研究者番号:90221712
(2)研究分担者
末益 崇 (SUEMASU TAKASHI)
国立大学法人筑波大学・大学院数理物質科
学研究科・教授
研究者番号:40282339

(3)連携研究者 特になし