自己評価報告書

平成22年5月26日現在

研究種目:特定領域研究 研究期間:2007~2011 課題番号:19051014

研究課題名(和文) 炭素系化合物の物質探索

研究課題名(英文) Research on carbon based materials

研究代表者

高野 義彦 (TAKANO YOSHIHIKO)

独立行政法人物質・材料研究機構・超伝導材料センター・グループリーダー

研究者番号:10354341

研究分野: 数物系科学

科研費の分科・細目:物理学・物性Ⅱ

キーワード:①超伝導材料・素子②半導体物性③ナノ材料④結晶成長⑤強相関電子系

1. 研究計画の概要

ダイヤモンドにホウ素を多量にドープす ることによって、金属-絶縁体転移を起こし超 伝導が出現することが最近発見された。ダイ ヤモンドの強いフォノンと電子格子相互作 用により超伝導が発現することが、光電子分 光やX線非弾性散乱などの実験から明らか になってきた。このようなドラスティックな 伝導現象は、ダイヤモンドのみならず、炭素 化合物全般に応用可能であると予想される。 我々は、ホウ素ドープダイヤモンドに加え、 新たに、高濃度ホウ素ドープ・カーボンナノ チューブ、ホウ素ドープ・グラファイトを合 成し、制御された環境で金属-絶縁体転移を励 起する。特に、配列ナノ空間を有するこれら の物質は、それに起因する独特のフォノンや 電荷を有しており、このことより、絶縁体か ら金属へ、金属から超伝導へと劇的な物性の 変化が期待される。これらの物性の制御と、 詳細な電子状態の評価を行う。

2. 研究の進捗状況

3. 現在までの達成度

当初の計画に沿っておおむね順調に進ん でいる。ダイヤモンドの超伝導については、 ダイヤモンド格子中のホウ素のローカルな 状態と電子状態の関係についておおむね順 調に解析が進められた。さらに、ダイヤモン ド超薄膜の成膜や成長時にパターニングす る技術である選択成長法についても順調に その技術革新が進んでおり、最近ではまだ安 定していないが 10nm レベルの超伝導薄膜を 選択エピ成長で作製できるようになりつつ ある。これらの技術は、ダイヤモンドの中の ホウ素を人為的に濃度制御し特性をコント ロールすることを狙いとしており、今後、超 伝導や金属、半導体、絶縁体の様々なダイヤ モンドを求める厚さでホモエピタキシャル に成長させることができるようになること を目指している。

4. 今後の研究の推進方策

ダイヤモンド超伝導を半導体におこる超 伝導としての特徴を生かした新機能を追求 する上で特に重要な点は、ホウ素濃度を空間 的に精密に制御する技術を開発することと ある。そのことにより、同じダイヤモンドの みを用いた半導体-金属-超伝導の複ごが イスが開発できるからである。例えば、セフン 接合をダイヤモンドのみで作製すること格 子の中のホウ素を如何に制御し如何に物性 そコントロールできるかをターゲットに研究を進めていきたい。一方、ホウ素ドープカ でボンナノチューブは、これまで、熱 CVD 法

により、電気抵抗率が通常の純粋なカーボン ナノチューブより2桁程度低くなることを 見出してきているが、電気抵抗の温度変化は、 殆どフラットであり、金属的伝導には至って いない。これは、ホウ素による乱れが原因し ているのか、それとも合成段階に入る欠陥が 原因か未だ不明である。我々は、ホウ素をよ り多く含有させ十分なキャリアが導入され れば、より金属的伝導が現れるのではないか と期待している。そこで、マイクロ波 CVD 法 を用いて全てガスから合成する手法により、 より高品質なホウ素ドープナノチューブの 合成にチャレンジしている。さらに大事なこ とは、伝導性塗料や特殊伝導体の開発へつな げるために、より簡便により大量に合成する ことが必要なのである。そのためにもマイク 口波 CVD 法による合成環境の開発は重要であ ると考えている。

5. 代表的な研究成果

〔雑誌論文〕(計8件)

- ①. S. Ishii, T. Okutsu, S. Ueda, and Y. Takano, Transport properties of multi-walledcarbon nanotubes grown by boron addition method, phys. stat. sol. (c) 5, 31-34, 2008, 查読有
- ②. Nishizaki T, Takano Y, Nagao M, Takenouchi T, Kawarada H, Kobayashi N, Scanning tunneling microscopy/spectroscopy on superconducting diamond films, NEW DIAMOND AND FRONTIER CARBON TECHNOLOGY 17, 21-31, 2007, 查読有
- ③. Takano Y, Takenouchi T, Ishii S, Ueda S, Okutsu T, Sakaguchi I, Umezawa H, Kawarada H, Tachiki M, Superconducting properties of homoepitaxial CVD diamond 16, 911, 2007, 査読有
- ④. Satoshi Ishii, Tohru Watanabe, Shinya Ueda, Shunsuke Tsuda, Takahide Yamaguchi, Takano Yoshihiko, Resistivity reduction of boron-doped multiwalled carbon nanotubes synthesized from a methanol solution containing boric acid, APPLIED PHYSICS LETTERS, 92, 202116, 2008, 查読有
- ⑤. Masahiro Toyoda, Asami Takenaka, Yoshihiko Takano, Noboru Akuzawa, Akira Yoshida, Yutaka Kaburagi, Synthesis conditions of graphite intercalation compound with Ca in molten Li-Ca alloy and its superconducting characteristics,

- TANSO, 233, 148-150, 2008, 查読有
- ⑥. Yoshikazu Mizuguchi, Keita Deguchi, Shunsuke Tsuda, Takahide Yamaguchi, Hiroyuki Takeya, Hiroaki Kumakura, Yoshihiko Takano, Fabrication of the Iron-Based Superconducting Wire Using Fe (Se, Te), APPLIED PHYSICS EXPRESS 2, 83004-1~3, 2009
- ⑦. Miwa Murakami, Tadashi Shimizu, Masataka Tansho, Yoshihiko Takano, Satoshi Ishii, Evgeni A. Ekimov, Vladmir Sidorov, Kiyonori Takegoshi, 10B/11B 1D/2D solid-state highresolution NMR studies on boron-doped diamond, DIAMOND AND RELATED MATERIALS 18, 1267~1273, 2009
- (8). Yoshihiko Takano, Superconductivity in CVD diamond films, JOURNAL OF PHYSICS-CONDENSED MATTER 21, 253201-1~11, 2009

〔学会発表〕(計4件)

- ①. 石井聡,渡邊徹,上田真也,津田俊輔,山口尚秀,高野義彦, New synthesis and physical property of low resistivity boron-doped multi-walled carbon nanotubes, ISS2007, 2007/11/05-11/07, エポカル, つくば市
- ②. Tohru Watanabe, Satoshi Ishii, Shunsuke Tsuda, Takahide Yamaguchi, Yoshihiko Takano, Novel CVD growth of boron-doped multi-walled carbon nanotubes, CARBON 2008, 2008/07/14-07/1, 長野
- ③. Yoshihiko Takano, Superconductivity in Boron doped Diamond, ISBB2008, 2008/09/07-09/12, 島根
- ④. 高野義彦,山口尚秀,渡邉恵,川原田洋, 炭素系物質の超伝導の進展と現状-ダイヤモンド超伝導を用いたデバイスの開発,物性科学領域横断研究会, 2009/11/29-01,文京区

[図書] (計2件)

- ①. 高野義彦 他,シーエムシー出版,ホウ素・ホウ化物および関連物質の基礎と応用,204-211,2008
- ②. 高野義彦 他,シーエムシー出版,ダイヤモンドエレクトロニクスの最前線,136-149,2008