科学研究費補助金研究成果報告書

平成24年 6月 8日現在

機関番号:82626 研究種目:特定領域研究 研究期間:2007~2011 課題番号:19051017 研究課題名(和文) 配列ナノ空間物質を利用した次世代半導体デバイス 研究課題名(英文) Advanced semiconducting devices using regulated nano-space materials 研究代表者 金山 敏彦(KANAYAMA TOSHIHIKO) 独立行政法人産業技術総合研究所・情報通信・エレクトロニクス分野・研究統括 研究者番号:70356799

研究成果の概要(和文): Mo やW などの遷移金属 M を内包した Si クラスター(MSi_n)を凝集した 半導体材料は、水素化アモルファス Si に類似の Si ネットワークを持ちながら、局所構造が揃 うことで高いキャリア移動度を有し、外部電界による電気伝導度の変調が可能であることを明 らかにした。さらに、Si 表面上で WSi_nを凝集しエピタキシャル成長させた WSi_n膜は、基板 Si と良好なヘテロ接合を形成することを見いだした。この極薄膜を金属電極の間に形成すること で、n型 Si に障壁高さの低い接合を形成する技術を開発した。

研究成果の概要(英文):We synthesized amorphous semiconductor films composed of transition metal encapsulating Si clusters (MSi_n) on solid substrates. The MSi_n film has higher carrier mobility than hydrogenated amorphous Si. We observed clearly the electric field effect on electrical conduction in the MSi_n films. Moreover, we have succeeded in formation of the hetero-epitaxial WSi_n layer on the Si substrate, enabling us to fabricate a low-barrier hetero junction contact to n-Si.

			(亚识平区 1/
	直接経費	間接経費	合 計
2007年度	10, 600, 000	0	10,600,000
2008年度	9, 800, 000	0	9, 800, 000
2009年度	6, 500, 000	0	6, 500, 000
2010年度	4, 100, 000	0	4, 100, 000
2011年度	2, 400, 000	0	2, 400, 000
総計	33, 400, 000	0	33, 400, 000

研究分野:ユビキタス元素戦略 科研費の分科・細目:ナノ材料 キーワード:遷移金属内包 Si クラスター、ナノエレクトロニクス、超薄膜

1. 研究開始当初の背景

Si トランジスタの微細化に伴い、Si と絶 縁膜・電極金属との界面状態の影響が顕在化 することやドーパント不純物原子数の統計 的揺らぎがデバイス特性のばらつき原因と なるなど、物質固有の問題が、顕在化してい る。さらに、極微細トランジスタのチャネル 材料には、ショートチャネル効果抑制のため に、極薄膜やワイヤなどの低次元構造が求め られる。これらの要求を一挙に満足させるた

(全痴畄伝, 田)

めに、本研究では、シリコン系配列ナノ空間 物質を用いて、原子結合やエネルギー準位が 連続した素子構造を規則配列的に形成する 物質制御技術を開拓し、極限的な高性能ナノ トランジスタ実現に方途を開くことを目標 とした。

2. 研究の目的

本研究の目的は、同種元素の組み合わせで 金属・半導体・絶縁体が合成できる配列ナノ 空間物質の利点を最大限に活用し、ナノスケ ールの電界効果トランジスタを、シリコン系 材料で、異種物質界面の不整合や材料構造の ランダムネスを伴わずに作製するための物 質構成原理を構築することである。特に、遷 移金属原子を周期配列したシリコン系が 配列物質の合成法と、この物質の電子状態確 立し、この物質を用いて、金属原子種と配列 密度の変調により良好な金属/半導体接合 が作製できること、および電界効果トランジ スタ動作、即ち、外部電界による伝導度変調 が行えることの実証を目標とした。

3. 研究の方法

遷移金属原子 M が中心に位置する MSi, クラ スターをランダムに凝集したアモルファス 薄膜と2次元的に周期配列したシリコン系 2次元配列ナノ空間物質を作製し、構造、電 子状態、キャリア輸送特性を調べた。MSi,ク ラスター薄膜は、モノシランガス(Sill₄)中で 遷移金属をレーザーアブレーションし、気相 中で遷移金属原子Mとシラン分子を反応させ て水素化した MSi_H クラスターを形成し、固 体基板へ堆積することで作製した。堆積した MSi, 膜は、その場で熱処理(~500℃)し、脱水 素化と膜質の向上を行った。構造・電子状態 の解析には、透過型電子顕微鏡観察、光吸収 分光、X線光電子分光、放射光施設での X線 吸収分光(XAS)、ラマン散乱分光を用いた。 また、キャリア輸送特性を調べるため、4端 子法を用いた電気伝導度およびキャリア濃 度測定を行い、薄膜トランジスタ構造を形成 して電界効果を測定した。以上の測定のため、 MSi_膜は、Si 基板だけでなく、Si 熱酸化膜な どの絶縁基板上でも形成した。

本研究では、上記実験研究と並行して、MSi_n 膜の第一原理計算による構造・物性の系統的 な解析・予測を行い、研究指針を明確にした。

4. 研究成果

(1) MSi,膜合成手法の開発

先行研究により、遷移金属原子(M)と SiH₄ との反応で、M を内包した Si クラスター (MSi_n: *n*= 10-16)が合成でき、構造を維持し た状態で、Si などの固体表面に堆積すること が可能であることが判っていた。そこで、 我々は、レーザーアブレーションを用いて Msi_a を作製し、それを固体基板上に堆積して 薄膜を形成するシステムを開発した。図1に システムの概略を示す。遷移金属(M)、もし くはその珪化物(Msi_2)のターゲットに、Nd: YAG レーザー光(532 nm, 0.3 W)を照射し、SiH₄ 雰囲気中(2-50 Pa)に金属原子をアブレーシ ョンして気相中の反応で水素化 Msi_n クラス ター(Msi_i , H_x)を形成し、Si または SiO_2 基板上 に堆積した。堆積後、 Msi_i , H_x 薄膜から水素を 脱離するために、真空中(2.0x10⁻⁵ Pa 以下) で 10 分間、~500℃に加熱した。光吸収によ る吸収端の測定、電気伝導特性の評価、X 線

図1:MSi, クラスター膜堆積システム

吸収分光スペクトル(XAS)などによる構造解 析を行った。

(2) アモルファス MSi_n膜の評価と薄膜トラ ンジスタ特性

Si0, 基板上に作製した、MSi, 膜に対して、 ラマン散乱測定を行った。図2に、MoSi₁₂、 NbSi₁₃膜と、リファレンスとして水素化アモ ルファスシリコン(a-Si:H)膜の Raman 散乱ス ペクトルを示す。いずれの試料からも、470 -480cm⁻¹付近に、ブロードな Si のオプティ カルフォノンが観察され(図2(a))、MoSi₁₂ と NbSi13 膜が a-Si 的な Si ネットワークを持 つことが分かる。一方で、a-Si:H 膜からは、 Si-Hの振動モードが2000cm⁻¹付近に観測され ているのに対して、MoSi12、NbSi13 膜では検出 されなかった(図2(b))。a-Si:Hでは、Hが Si のダングリングボンド(DB)を終端してい る。これら MSi,膜の電子スピン共鳴測定を行 ったところ DB 欠陥は検出されなかったので、 MoSi₁₂、NbSi₁₃膜では、遷移金属が Si の DB を終端していることが分かった。M による Si-DB の終端は、第一原理計算シミュレーシ

ョンでも確認できた。

MSi,膜の組成は、堆積時のSiH4の圧力によ って、調整することができる。図3に、ZrSi、、 MoSi, NbSi, WSi, 膜の吸収端(E) と抵抗率 の組成依存性を示す。吸収端は、n>5 におい て、 n の増加に伴い上昇し、n~10 では Mo の場合、1 eV より大きくなった。抵抗率は、 nの増加に伴い指数関数的に上昇し、n~10 で1 Ω cm に到達した。これは、Si 籠状構造 を持つ MSi を堆積することで、膜中でも MSi, 構造が保持され、クラスターのエネルギーギ ャップが開いていることを反映した半導体 MSi,膜が形成できたことを示している。実際、 WSi_n(n~10) 膜の XAS を測定すると、W の周り に10個程度のSiが配位していることが確認 でき、局所的に W を内包した Si 籠状構造が 形成されていることがわかる。

図 2: MoSi₁₂、NbSi₁₃膜と、a-Si:H膜の Raman 散乱スペクトル。(a)Si オプティカルフォ ノン、(b)Si-H 振動。(a)中に MoSi₁₂ と、 NbSi₁₃ 膜の単位構造を示す。青球が遷移金 属元素、白球が Si を表す。N. Uchida *et al.*, *APEX* 1 (2008) 121502-1-3.

DB などのキャリアの散乱体が少ない a-Si 膜は、比較的高いキャリア移動度を獲得する ことができるので、電子デバイス材料として 利用できる。実際、a-Si:Hは、薄膜トランジ スタ(TFT)の材料として用いられている。そ こで、Hall効果測定を行い、MSi,膜のキャリ ア移動度を測定した。その結果、M の種類と

図3: ZrSin、 MoSi_n、NbSi_n、WSi_n膜の 吸収端(*E*_{og})と抵抗率の組成依存性 N. Uchida *et al.*, *Thin Solid Films*, 519, (2011) 8456-8460.

Si 組成によってキャリアタイプや密度 (10¹⁴-10²⁰ cm⁻³)が調整可能であることが判っ た。特に、MoSi₁₂膜は、正孔移動度 30cm²/Vs(室 温)を持つ p 型半導体で、これは、一般的な a-Si:H の正孔移動度 (~0.1cm²/Vs) の 300 倍である。また、NbSi_n膜は、n 型の半導体で、 室温のキャリア移動度は、10 cm²/Vs となり、 一般的な a-Si:H の電子移動度 (~1cm²/Vs) の 10 倍に相当する。以上の結果は、MSi_n膜が a-Si:H に代替して、TFT のチャネル材料とし て大変有望であることを示している。

そこで、図4に示したように、バックゲート型の MoSi₁₀ 膜チャネル TFT ($L=100 \mu$ m, $I=300 \mu$ m)を試作し電界効果測定を行った。 MoSi₁₀ 膜は、Hall 効果測定の結果、抵抗率が 9.2 Ω cm、キャリア密度が4.2×10¹⁶ cm⁻³の p 型の半導体で、~1.6 cm²/Vs の正孔移動度を 示した。MoSi₁₀ 膜チャネル TFT の I_{d} - V_{d} 特性か ら、p-チャネル・エンハンスメント型の電界 効果特性が得られ、MoSi₁₀ 膜がチャネルとし て動作することが分かった。 I_{on}/I_{off} 比は46.7、 閾値電圧 V_{cb} は~3.0V であった。線形領域の ドレイン電流値から見積もった実効的な電 界効果移動度は 3x10⁻³ cm²/Vs を示すが、それ は Hall 効果測定で得られた正孔移動度(~ 1.6 cm²/Vs)よりも大幅に低い。この理由は、 大多数のキャリアが MoSi₁₀ の膜内部や SiO₂ 界面に存在するギャップ内準位にトラップ され、伝導に寄与できないためだと考えられ る。このトラップ準位を低減するためには、 500-600℃の熱処理によるが有効であったが、 移動度を大幅に向上させるほどの十分な効 果は得られていない。一方で、電界により電 気伝導特性が変調されることから、ゲート電 極から MoSi₁₀ 膜へ向かう電界がスクリーニン グされるほどの界面準位は存在しないこと が分かる。

図4: $MoSi_{10}$ 膜チャネル TFT の I_d - V_g 特性。 N. Uchida *et al.* Mater. Res. Soc. Symp. Proc. 1321, (2011) 361-366.

(3)Si 表面上での MSi_nエピタキシャル層の作製と接合特性評価。

第一原理計算結果から、MSi_nを周期的に配 置した原子層薄膜が 0.2-0.5 eVのギャップ を持った半導体になることをヒントに、結晶 Siの表面構造をテンプレートとしたMSi_nの配 列構造形成を行った。Si(100)基板の2x1 再構 成表面にWSi_n(n~10)を堆積し、膜厚5nmのア モルファス膜を形成した後に、450-500℃で 熱処理すると、1 nm程度の厚さのエピタキシ ャル層が形成できることが、高分解能透過走 査電子顕微鏡観察により判明した(図5)。さ らに、電子線エネルギー損失分光、及び、高 角度散乱暗視野法とX線光電子分光の併用に より、この界面エピタキシャル層は、1)予想 通りのWおよびSi組成を有すること、2)Siの 結合状態が結晶Siと異なること、3)Si基板と 比較して基板表面に垂直な(100)方位に面間 隔が14%程度伸びていること、4)価電子帯端 がフェルミレベルから0.5 eV低い位置にあり、 ギャップを有する半導体であることが、判っ た。さらに、電気的特性の測定により、WSi₁₀ エピタキシャル膜はn型の半導体で、基板Si と良好なヘテロ接合を形成していることを確 認した。以上のように、Si基板上でWSi_aを配 列させた結晶構造を作製し、半導体薄膜が形 成できることを実証した。

図5:Si(100)表面上のWSi₁₀エピタキシャ ル膜の断面走査型透過電子顕微鏡像。S.J. Park *et al.* J. Appl. Phys. 111, (2011) 063719-1-5.

Siとヘテロ接合したWSiu腹上に、スパッタ 法を用いて厚さ~100 nmのW電極を作製し、電 流-電圧(IV)と電気容量-電圧(CV)特性を 評価した。室温付近では、WSi₁₀膜とn-Siの接 合の*IV*特性はオーミック特性を示し(図6)、 CV特性は接合の漏れ電流のため、計測不可能 であった。そこで、低温(220 K以下)のCV 特性から障壁高さを算出したところ~0.4 eV であった。室温付近では、WSi₁₀膜が高い電子 密度を持っているために、W電極とWSin膜の 間でトンネル電流が支配的となることでオー ミック特性となるものの、220 K以下では、 WSi₁₀膜のキャリアが凍結したためにn-Siの 空乏層に起因したCを測定できたと考える。一 方で、p-SiとWSi₁₀膜との接合では、障壁高さ 約 0.8 eVの整流特性を得たことから、p-nへ テロ接合を形成したと考えられる。

図6:WSi₁₀膜とn-Si、及び、p-Siの接 合の*IV*特性

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計10件)

①Sunjin Park, <u>Noriyuki Uchida</u>, and <u>Toshihiko Kanayama</u>, Electronic properties of W-encapsulated Si cluster film on Si (100) substrates, J. Appl. Phys.,査読有, 111, 2012, 063719-1-5, DOI: 10.1063/1.3695994.

②Noriyuki Uchida, <u>Takehide Miyazaki</u>, Yusuke Matsushita, Kenichiro Samaeshima, and <u>Toshihiko Kanayama</u>, Electric field effect in amorphous <u>Noriyuki Uchida</u>, Hiroshi Kintou, Yusuke Matsushita, <u>Tetsuya Tada</u> and <u>Toshihiko</u> <u>Kanayama</u>, Synthesis of New Amorphous Semiconductors Assembled from Transition-Metal-Encapsulating Si Clusters, Appl. Phys. Express, 查読有, 1, 2008, 121502-1-3. DOI: 10.1143/APEX. 1.121502.

③Takehide Miyazaki and <u>Toshihiko</u> <u>Kanayama</u>, First-principles theory for Si-based atomically thin layered semiconductor crystal, Appl. Phys. Lett., 査読有, 91,2007 082107-1-3. DOI: 10.1063/ 1.2767205.

〔学会発表〕(計37件)

①Noriyuki Uchida, <u>Takehide Miyazaki</u>, Yusuke Matsushita, Kenichiro Samaeshima, and <u>Toshihiko Kanayama</u>, "Electric field effect in amorphous semiconductor films assembled from transition-metal-encapsulating Si clusters", 2011 MRS Spring Meeting and Exhibit, April 25-29, 2011, San Francisco, USA.

②<u>Toshihiko Kanayama, Noriyuki Uchida,</u> and, <u>Takehide Miyazaki</u>, New Semiconducting Silicides Assembled from Transition-Metal-Encapsulating Si Custers, Asia-Pacific Conference on Semiconducting Silicides Science and Technology Towards Sustainable Optoelectronics (APAC-SILICIDE 2010), Tsukuba, Japan, July 24-26, 2010.

③<u>Noriyuki Uchida</u>, Hiroshi Kintou, Yusuke Matsushita, <u>Tetsuya Tada</u>, Kazuhiho Kirihara, Hiroyuki Oyanagi and <u>Toshihiko Kanayama</u>,

"Synthesis and Characterization of Clusters Assembled Films Composed of Transition-Metal Encapsulating Si Clusters", 2008 International Conference on Solid State Devices and Materials (SSDM 2008), Sep. 23-26, Tsukuba, Ibaraki, Japan.

〔産業財産権〕
○出願状況(計7件)
名称:ナノ結晶凝集半導体材料及びその製造方法
発明者:内田紀行、金山敏彦
権利者:独立行政法人産業技術総合研究所
種類:特許
番号:特願 2011-199630
出願年月日:平成23年9月13日
国内外の別:国内

名称:金属珪素化合物薄膜及びその製造方法 発明者:金山敏彦、内田紀行 権利者:独立行政法人産業技術総合研究所 種類:特許 番号:特願 2008-048520 出願年月日:平成 20年2月28日 国内外の別:国内

名称:金属珪素化合物薄膜及びその製造方法 発明者:金山敏彦、内田紀行 権利者:独立行政法人産業技術総合研究所 種類:特許 番号:PCT/JP2009/053422 出願年月日:平成20年2月28日 国内外の別:国外

○取得状況(計1件) 名称:薄膜トランジスタ

発明者:内田紀行、金山敏彦、宮崎剛英 権利者:独立行政法人産業技術総合研究所 種類:特許 番号:特許第4660743号 取得年月日:平成23年1月14日 国内外の別:国内 [その他] Phys. Status Solidi (c), 7, 3-4 の表紙を 遷移金属内包シリコンクラスター物質の第 一原理計算の研究が飾った。 6. 研究組織 (1)研究代表者 金山 敏彦 (Toshihiko Kanayama) 独立行政法人産業技術総合研究所・情報通 信・エレクトロニクス分野・研究統括 研究者番号:70356799 (2)研究分担者 多田 哲也 (Tetsuya Tada) 独立行政法人産業技術総合研究所・ナノエ レクトロニクス研究部門・グループ長 研究者番号:40188248 宮崎 剛英 (Takehide Miyazaki) 独立行政法人産業技術総合研究所・ナノシ ステム研究部門・主任研究員 研究者番号:10212242 内田 紀行 (Noriyuki Uchida) 独立行政法人産業技術総合研究所・ナノエ レクトロニクス研究部門・研究員 研究者番号:60400636