科学研究費助成事業

研究成果報告書

平成 26 年 6月 9日現在

機関番号: 1 4 4 0 1
研究種目: 新学術領域研究(研究領域提案型)
研究期間: 2008 ~ 2013
課題番号: 20111016
研究課題名(和文)トップダウン空間規制電極による自己組織的分子機能創発
研究課題名(英文)Emergence of self-organized molecular system with Top-down nanoelectrodes
研究代表者
松本 卓也(MATSUMOTO. TAKUYA)
大阪大学・理学(系)研究科(研究院)・教授
研究者番号:5 0 2 2 9 5 5 6
交付決定額(研究期間全体):(直接経費) 58,300,000 円 、(間接経費) 17,490,000 円

研究成果の概要(和文):ナノスケール空間の少数分子系に現れるゆらぎや確率共鳴を利用して、論理デバイスおよび センサーとしての機能創発を試みた。DNAを用いて酸化還元活性を有する分子のネットワークを形成し、電気的特性を 調べた。その結果、クーロンネットワークモデルで良く記述できることがわかった。このような非線形応答を示す分子 のネットワーク系を生かした応用として、確率共鳴素子の実験を行った。熱ノイズにより微弱な入力信号を高いS/Nで 検出することに成功した。この成果は分子によるニューラルネットワーク構築の可能性を示すものである。

研究成果の概要(英文):We investigated that emergence of logic and sensor function in nano-molecular syst em induced by fluctuation and stochastic resonance. The self-organized redox-molecule/DNA network shows no nlinear electric properties that can be described by the Coulomb blockade network model. As a demonstratio n of the nonlinear network system, we have observed stochastic resonance without tuning for periodic input signals and thermal noise, which suggests a route to neural network composed of molecular materials.

研究分野:物性化学、表面科学

科研費の分科・細目: ナノ・マイクロ科学・ナノ材料・ナノバイオサイエンス

キーワード: ナノ電極 自己組織化 分子エレクトロニクス バイオチップ 分子認識 ナノ構造体 微細加工 複 製モールド

1.研究開始当初の背景

自然界では、ゆらぎやノイズを積極的に 利用し、柔軟性に富む情報処理が行われて いる。たとえば、ニューラルネットワーク や生体組織では、確率的な要素が集合的に 働き、欠陥に寛容な確率共鳴を基礎とする 機能が実現している。そこで、ナノスケール 空間の少数分子系に現れるゆらぎや確率共鳴 を利用して、論理デバイスやセンサーとしての機 能を発現する分子系の構築を試みた。分子の 局在性を生かし、酸化還元準位を経由したナノ スケールの空間におけるホッピング伝導を用い て、熱励起による「ゆらぎ」の効果を取り入れるこ とを目指した。

2.研究の目的

非線形な電子伝達特性を有する分子を自 己組織的に配列することにより、熱による確 率共鳴現象を示すデバイスを構築すること。 本研究を通して、個々の分子物性の総和を超 えた機能の創発を示すこと。

3.研究の方法

非線形な電子伝達特性を有する分子とし て、シトクロム c、Mn12 核錯体を選んだ。こ れらの分子には、複数の価数をとることので きる金属原子が含まれ、かつ価数の変化に対 して分子構造が極めて安定である。また、金 属原子を含む分子の大きさが、およそ 3nm 以 下であるため、トンネリングによる電子の授 受が可能である。このような分子は、金属微 粒子と同じようなクーロンブロッケード現 象を示す。例として Mn12 核錯体の場合につ いて、概念図を図1に示す。

図1. Mn12 核錯体と金属微粒子の電子的類似性

これらの分子を DNA に結合させることによ リ、ネットワーク状に配列した。(図2(b)) DNA は基板表面で2次元のネットワーク構造 を形成することができる。シトクロムcは多 数のアミン残基が分子の外側にあるため、 DNA のリン酸基と静電的結合を形成する。ま た Mn12 核錯体には、アニリンを導入し、DNA のリン酸基と結合を形成するようにした。

基板上に形成したMn12核錯体 / DNA ネット

ワークの上に研究代表者らが開発してきた 傾斜蒸着法を用いて、約100nmのギャップ間 隔を持つトップコンタクト電極を形成した。 (図2(c)電気特性の計測は、極低温・真空 プローバーを用いて、真空中で10Kから300 Kの温度範囲で行った。

図2.(a)Mn12 核錯体の分子構造、(b)Mn12/DNA ネ ットワークの AFM 画像、(c)ナノギャップ電極を用 いたデバイスの模式図。

4.研究成果

低温における Mn12/DNA ネットワークの 電流-電圧(/-レ)特性をみると、ゼロバイ アス近傍では、コンダクタンスは完全にゼ ロであり、正負対称な閾値からの立ち上が りを示した。また、閾値電圧は温度上昇と ともにゼロに近づくことも明らかになった。 このような電気特性は、半導体的な電子状 態や Fowler-Nordheim 機構を仮定した通 常のトンネリングモデルでは説明できない。 そこで、分子の酸化還元による電子二準位 系とクーロンブロッケードは電子配置の点 で等価であることに着目して、クーロンネ ットワークモデルによる解釈を試みた。 ク ーロンネットワークの電流 - 電圧(|-V) 特性は、*l* ∝ {(*V*/*V*_{th}) – 1}^ζ で記述できる ことが、計算と実験からすでに分かってい る。図3(a)はMn12/DNA ネットワークの 電流 電圧(I-V)特性の実験結果(プロッ ト)と、クローンネットワークモデルによ るフィッティグの結果(実線)である。/-/ カーブは、このモデルで完全にフィットで きることがわかる。図3(a)の上部挿入図に クーロンネットワークモデルの概略を示し た。このモデルでは、ネットワーク中の複 数のクーロンブロッケードを経由して電流 が流れる。電流経路に存在する複数のクー ロンブロッケードの電荷蓄積エネルギーの 総和が閾値電圧 V_{th} に対応する。また、電 流経路の分岐の次元が、 値に対応する。

このような電気的特性が界面の影響では なく、デバイス内部の分子ネットワークによ るものであることは、インピーダンス測定の 結果からも支持された。図3(b)はコール -コールプロットの結果である。明瞭な半円形 のプロットが得られており、デバイス特性に イオン電流が介在していないこと、単緩和で あることから、グレインの無い等価回路で表 わされることが明確である。

図4.(a)Mn12/DNA ネットワークデバイスの I-V 特性:実験データ(黒丸)とクーロンネットワー クモデルによる計算結果。上部挿入図はクーロン ネットワークモデルの模式図。(b)Mn12/DNA ネッ トワークデバイスのインピーダンス測定結果。上 部挿入図は周波数特性。

Mn12/DNA デバイスに周期的な微弱信号を 入力し、ノイズを混合した場合の入力信号、 出力信号の結果を図4(a,b)に示した。ノイ ズの振幅が大きくなるにつれて、微小入力信 号と同期した出力が現れる。このときの相関 係数とS/N比を(c)、(d)に示した。S/N比は 入力ノイズ振幅に対して S/N=40 のピークを 持ち、確率共鳴現象の特徴を良く表している。 この実験では、非線形応答を示すデバイス全 体に、人工的な一種類のノイズを加えた。

図 4 .デバイス全体に外部ノイズを与えたときの (a)入力信号、(b)出力信号、(c)相関係数、(d)S/N 比。

一方、本デバイスは、内部の構成要素であ る個々の分子も非線形応答を示すことが期 待されるので、これら個々の分子に独立のノ イズを与えることができれば、より効果的な 確率共鳴現象が観測されるはずである。そこ で、独立ノイズとして振る舞う熱ノイズを与 える目的で、デバイスの動作温度を上昇させ た。その結果を図5に示した。図5(a)に示 したように、入力信号は一定であり、人工的 なノイズ注入は行っていない。しかし、温度 上昇とともに、次第に入力と同期した周期信 号が出力に表れる。温度は熱ノイズの振幅に 比例するので、温度の関数として相関係数と S/N を求めたのが図5(c)、(d)である。独立 かつ複数のノイズが、それぞれ複数の電流経 路に挿入されるので、ピークが現れなくなる が、S/N がおよそ 300 と著しく増大している のが分かる。

図 5 .デバイスの温度を上昇させたときの(a)入力 信号、(b)出力信号、(c)相関係数、(d)S/N比。

以上のように、個々の分子の特性が創発的 に働き、多くの分子から構成されるデバイス において確率共鳴現象が発現することを見 出した。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計17件)全部査読あり 松本卓也、電子移動反応に立脚した分子 エレクトロニクス、産業と技術、65[4] 巻、2013、pp.57-60、 URL:http://www6.ocn.ne.ip/~seisan/65 4/654-57.pdf 松本卓也、シトクロムcを用いた酸化還 元ネットワークにおける確率共鳴現象、 化学工業、64[8]巻、2013、pp.580-584 URL: http://www.kako-sha.co.jp/ Y. Hirano, Y. Segawa, T. Kawai, T. Matsumoto, Stochastic Resonance in a Molecular Redox Circuit, J. Phys. Chem. C、117[1]巻、2013、pp.140-145、 DOI: 10.1021/jp310486z Y. Hirano, K. Ojima, Y. Miyake, T. Kawai, T. Matsumoto, Emergence of High-density DNA Origami Network by Dewetting with a Binary Solvent, Chem. Lett.、41[11] 卷、2012、pp.1459-1461、 DOI:10.1246/cl.2012.1459 Y. Hirano, Y. Segawa, F. Yamada, T. Kuroda-Sowa, T. Kawai, T. Matsumoto, Mn12 Molecular Redox Array Exhibiting One-Dimensional Blockade Coulomb Behavior, J. Phys. Chem. C, 116[18] 巻、2012、pp.9895-9899、 DOI: 10.1021/jp301778r T. Matsumoto, E. Mikamo-Satoh, A.

Takagi, T. Kawai, Single Molecular

Observation of DNA and DNA Complexes by Atomic Force Microscopy , Current Pharmaceutical Biotechnology, 13[14] 巻、2012、pp.2589-2598、 URL:http://www.ingentaconnect.com/co ntent/ben/cpb/2012/00000013/00000014 /art00007 Y. Maeda, T. Matsumoto, T. Kawai, Transverse Imaqinq of Electron Transfer through a DNA Molecule by Simultaneous Scanning Tunneling and Frequency-Modulation Atomic Force Microscopy、ACS Nano、5[4]巻、2012、 pp.3141-3145、DOI:10.1021/nn200291f H. Matsuura, H. Hokonohara, T. Sugita, A. Takagi, K. Suzuki, T. Matsumoto, T. Kawai, DNA Observation with Scanning Tunneling Microscope using a Solution. J. Appl. Phys、109[3] 巻、2011、pp. 034701 (5pp), DOI: 10.1063/1.3527056 B. K. Lee, N. G. Choa, H. Tanaka, N. Y. Hong, D. P. Kim, <u>H. Y. Lee</u>, T. Kawai, Photocurable Polyhedral Oligomeric Silsesquioxane-based Resists for Nanoimprint Lithography: Fabrication of High-Aspect Ratio Structures and Replica Molds、Langmuir、26[28]巻、2010、 pp.14915-14922、 DOI: 10.1021/la1025119 S. Tabuchi, Y. Otsuka, M. Kanai, H. Tabata, T. Matsumoto, T. Kawai Nano-scale Resistivity Reduction in Single grain of Lead Phthalocyanine, Organic Electronics、11[5]巻、2010、 pp.916-924、 DOI: 10.1016/j.orgel.2010.02.011 A. Takagi, F. Yamada, T. Matsumoto, T. Kawai、 Electrostatic Force Spectroscopy on Insulating Surfaces: the Effect of Capacitive Interaction, Nanotechnology、20[36] 卷、2009、pp. 365501(7pp)、 DOI: 10.1088/0957-4484/20/36/365501 E. Mikamo-Satoh, F. Yamada, A. Takagi, T. Matsumoto, T. Kawai, Electrostatic Force Microscopy: Imaging DNA and Protein Polarizations One by One, Nanotechnology、20[14] 巻、2009、pp. 145102(6pp)、 DOI: 10.1088/0957-4484/20/14/145102 N.G.Choa, B.K.Lee, H.Y.Lee, T.Kawai, H.Tanaka Direct Fabrication of Integrated 3D Au Nanobox Arrays by Sidewall Deposition with Controllable Heights and Thicknesses, Nanotechnology、20[39] 巻、2009、pp. 395301 (6pp)、 DOI: 10.1088/0957-4484/20/39/395301 B.K.Lee, H.Y.Lee, P.N.Kim, K.Y. Suh,

T.Kawai、Nanoarrays of Tethered Lipid Bilayer Rafts on Poly(vinyl alcohol) Hydrogels、Lab on a chip、9[1]巻、2009、 pp.132-139、DOI: 10.1039/B809732A

[学会発表](計62件)うち招待講演19件 松本卓也、巨大分子の酸化還元ネットワ ークを用いた確率増幅デバイス 特別企 画公演 単一分子電子伝導とノイズ、揺 らぎ~脳型電子素子への道、日本化学会 第 94 春季年会(2014) 、2014 年 3 月 30 日、名古屋大学 東山キャンパス (愛知 県名古屋市) Takuya Matsumoto, Stochastic Resonance in a Molecular Redox Circuit 、 International Conference on Small Science (ICSS 2013)、2013 年 12 月 17 □. The Red Rock Casino Resort and Spa. (Las Vegas Nevada, USA.) Takuya Matsumoto, Redox-Active Huge Molecular Network Exhibiting Noise-Induced Stochastic Enhancement, International Union of Materials Research Societies -International Conference on Electronic Materials 2012 (IUMRS-ICEM 2012)、2012 年 9 月 24 日、PACIFICO YOKOHAMA (Yokohama Japan) Takuya <u>Matsumoto</u>, Noise-Induced Stochastic Enhancement for a Device Based on Cytochrome C and DNA Nanonetwork, 12th European Conference on Organized Films (ECOF12)、2011年7 月 20 日、Sheffield Hallam University (Sheffield UK) 松本卓也、巨大分子ネットワークを用い た確率増幅デバイス、2011 年春季 第 58 回 応用物理学関係連合講演会、2011年3 月 25 日、神奈川工科大学 (神奈川県・ 厚木市) <u>松本卓也</u>、ニューロンを模倣した表面ネ ットワーク分子デバイスへのアプローチ、 第 29 回表面科学学術講演会、2009 年 10 月27日、タワーホール船堀 (東京)

〔図書〕(計2件)

<u>松本卓也、NTS、「超分子ナノエレクトロニ</u> クス」超分子サイエンス&テクノロジー - 基礎 からイノベーションまで - (国武豊喜 監修)第3章 超分子の新しい展開とナ ノマテリアル、第2節 超分子デバイス、 2009、1244 (642-646)

〔 産業財産権 〕
出願状況(計1件)
名称:ナノインプリントリソグラフィー用の高耐
久性レプリカモールドおよびその作製方法
発明者:B.K.Lee、<u>H.Y.Lee</u>、川合 知二,
N.Y.Hong, D.P.Kim,
権利者:大阪大学
種類:特許

出願年月日:2009年6月5日 国内外の別:国内 取得状況(計1件) 名称: THE MANUFACTURE METHOD OF HIGH DURABLE REPLICA MOLD FOR NANOLOTHOGRAPHY 発明者:T.Kawai, H.Y.Lee, B.K.Lee, N.Y.Hong, D.P.Kim 権利者: ChungNam 大学、大阪大学 種類:国際特許分類 B29C-033/38 番号:登録番号10-0928184 取得年月日:2009年11月17日 国内外の別:国外(韓国)

番号:特願2009-0006902

6.研究組織
(1)研究代表者
松本 卓也(MATSUMOTO TAKUYA)
大阪大学・大学院理学研究科・教授
研究者番号:50229556

(2)研究分担者(H.23.10.18 削除)
李 恵リョン(LEE HEA-YEON)
大阪大学・産業科学研究所・特任教授
研究者番号:00362632

(3)研究協力者
平野 義明(HIRANO YOSHIAKI)
大阪大学・理学研究科・特任研究員
研究者番号:10434896

三宅 雄介(MIYAKE USUKE) 大阪大学・工学研究科・特任助教