科学研究費助成事業 研究成果報告書

平成 30 年 5月 20 日現在

	_
機関番号: 17102	
研究種目: 基盤研究(B)(一般)	
研究期間: 2015~2017	
課題番号: 15H04112	
研究課題名(和文)暗視野電子線ホログラフィーによる格子歪と磁性の同時解析~手法開発と磁気機能の探索	
研究課題名(英文)Dark-field electron holography studies on strain and magnetization: methodology and applications to magnetic materials	
研究代表者	
村上 恭和(MURAKAMI, Yasukazu)	
九州大学・工学研究院・教授	
研究者番号:30281992	
父何决正額(研究期間全体):(直接経賃) 12,400,000円	

研究成果の概要(和文):暗視野電子線ホログラムに含まれる電磁場情報と歪情報を分離するための新しい技術 を開発した。この技術をNd-Fe-B商用磁石の歪解析に応用し、同試料における析出物と格子歪の関係を明らかに した。暗視野電子線ホログラフィーによる歪解析は、複雑な磁場情報が重畳する磁性材料への適用が難しいと考 えられてきたが、本研究により従来の技術的問題が解決され、同手法の実用性が大いに高まった。

研究成果の概要(英文):We have developed a method that allows for separation of the crystal-strain information from the electromagnetic information stored in a dark-field electron hologram. The method was applied to a strain analysis of Nd-Fe-B permanent magnet which contained several types of precipitates. The observation provided useful information about the relationship between precipitates and lattice strain in the sintered magnet. This study accordingly demonstrated the usefulness of dark-field electron holography, which can be a tool of strain analysis not only for non-magnetic systems but also magnetic systems.

研究分野:材料工学

キーワード: 電子顕微鏡 磁性材料 磁気イメージング 歪解析 電子線ホログラフィー

1. 研究開始当初の背景

モーターの小型化に不可欠な希土類磁石 や、デバイス開発の宝庫であるスピントロニ クス系材料では、結晶の歪がその電磁気特性 に決定的な影響を及ぼす。歪と磁化の強い相 関をエンジニアリングとして有効に活用す るためには、材料が示す複雑な歪分布を精緻 に解析する必要がある。本研究ではその手法 として"暗視野電子線ホログラフィー"に注 目した。

ここで注目する手法は、日立製作所の外村 彰博士が開拓した「電子線ホログラフィー」 の一種である。図1(a)に示す通り、通常の電 子線ホログラフィーでは、薄膜試料を透過し た電子(物体波)を、真空中の参照波と干渉 させてホログラムを作る。ホログラムには物 体波が被る「磁場由来の位相変化 Ømag」と

「電場由来の位相変化 *φ*elc」が記録される。*φ*mag と*φ*elc は実験的に分離可能であり、ホログラム の解析を通して試料の磁場情報と電場情報 をそれぞれ明らかにすることができる。

一方、格子欠陥の近傍では電子回折波に余 分な位相変化 Østr が生じる。前述した通常のホ ログラフィーは歪情報を含まない透過ビー ム(回折図形の000反射)を利用するのに対 し、暗視野電子線ホログラフィーでは歪情報 を含む回折ビーム(例えば002反射)を物体 波として使う:図1(b)。歪んだ領域を透過し た物体波を、歪のない領域を透過した参照波 と干渉させることで、ホログラムに Østr を記録 することができる。磁性のない半導体試料等 に対しては、この Østr の解析を通して二次元歪 マップを算出できる(Hytch et al., Nature 2008)。しかし、複雑な磁場情報 Ønag が重畳す

(a) Conventional EH

る磁性材料の歪解析は困難と考えられ、本研 究計画の立案時点では、暗視野電子線ホログ ラフィーは実用化からほど遠い状態にあっ た。

2. 研究の目的

上述した背景を踏まえて、本研究では暗視 野電子線ホログラフィーを磁性材料の歪解 析に利用するために必要な基盤技術の開発 に取り組んだ。同技術を駆使した、言わば改 良型の暗視野電子線ホログラフィーを用い てNd-Fe-B磁石材料等の観察を行い、歪情報 と磁場情報の正確な分離を試みた。

研究の方法

本研究では、同一視野に対して暗視野電子 線ホログラムを二種類の回折ビームを使っ て取得する。具体的には図1(b),1(c)に示す 通り、002 ブラッグ反射(g反射)と、00-2 ブラッグ反射(-g反射)を使って、一対の暗 視野電子線ホログラムをを取得する。この回 折ビーム(ブラッグ反射)の負号反転により、 歪由来の位相変化は ϕ_{str} から- ϕ_{str} へと負号を 変える。これに対して、電磁場由来の位相変 化($\phi_{mag} + \phi_{elc}$)は負号を変えない。この性質 を利用し、一対の位相データの差分を取るこ とで歪情報と磁場情報を分離できると考え た。

なお、本研究で用いた一部の試料は、電子 照射に伴う帯電効果が無視できるほど小さ く、かつ観察領域における試料の厚さ変化も 比較的小さなものであった。このような場合、 ϕ_{elc} の寄与は無視でるため、位相情報の重畳・ 分離は ϕ_{str} と ϕ_{str} の問題に帰結する。以下4-(1) で述べるNd-Fe-B磁石の解析例はこのケース に該当する。

4. 研究成果

(1) Nd-Fe-B 永久磁石の解析

最適化熱処理を施した Nd-Fe-B 商用磁石を 集束イオンビームにより薄片化し、その微細 組織を透過電子顕微鏡法 (TEM) で解析した。 図 2(a) に示す通り、この試料には Nd₂O₃、α-Nd (金属 Nd 相)、NdO_xなどの析出物が含まれて いる。図 2(a) では球形の Nd₂O₃ 析出物が確認 される。主相である Nd₂Fe₁₄B 相と比べて格子 定数や熱膨張率が異なることから、Nd₂O₃ 析出 物との界面近傍には、いわゆる歪コントラス トが観察される。

通常の電子線ホログラフィー(透過波を使って結像を行う明視野モードの電子線ホロ グラフィー)を用いて、図2(a)と同一の領域 からホログラムを収集した。そのホログラム から再生した位相再生像、即ちプローブ電子 の位相変化を等高線状に表した結果を図 2(b)に示す。Nd-Fe-B 磁石材料は金属材料で あるため電子線照射に伴う帯電効果を無視 でき、また集束イオンビームで薄片化した試 料であるため厚さの変化は緩やかである。こ のため、位相再生像における電場情報 *e*tc の寄

図 2 Nd-Fe-B 磁石の(a) TEM 明視野像 と、(b) 同領域から取得した明視野ホ ログラムの解析結果(位相再生像)。 原著論文③より転載。

与は小さい。この位相再生像に注目する場合、 暗視野電子線ホログラフィーによるデータ 解析は、言わば青枠で囲んだ参照領域 (reference の領域)で観察された電子位相 に対して、赤枠で囲まれた物体領域(析出物 を含む object の領域)の電子位相が、相対 的にどれだけ変化しているかを求めること に相当する。

図 3(a)は、Nd₂Fe₁₄B 相の 002 反射を使って 取得した暗視野電子線ホログラムを示す。図 3(a)は暗視野像の一種であるため、結晶相の 異なる Nd₂O₃ 析出物の部分には情報が与えら れていない:図 3(a)では、Nd₂O₃ 析出物の形 状と位置を青色で表している。これに対して Nd₂Fe₁₄B 相では全域にわたって電子波の干渉 縞が観測されている。図 3(c)は、3(a)から得 た位相再生像であり、Nd₂Fe₁₄B 相の領域で観 測される位相変化を等高線として表してい る。上述した通り、 $\phi_{nag} \ge \phi_{str}$ が重畳した状態、 即ち ϕ_{mag} + ϕ_{str} という位相変化を与えている

図 3 (a), (b)異なるブラッグ反射を用い て作成した暗視野ホログラムと、(c), (d) その位相再生像。(e)は位相再生像(c)と (d)の差分。原著論文③より転載。

図 4 (a)α-Nd 析出物を含む領域から取 得した暗視野電子線ホログラムと、(b) 同領域における歪マップ。原著論文③ より転載。

が、実質的には*φ*_{str}と比べて*φ*_{mag}が圧倒的に強い状況となっている。

図3(b)には、Nd₂Fe₁₄B相の-002反射を使っ て同一の領域から得た暗視野電子線ホログ ラムを示す。ブラッグ反射の負号をプラスか らマイナスに反転させたことに伴い、ホログ ラムに含まれる位相情報はこの場合 φ_{mag} φ_{str}という形になる。図3(b)の暗視野電子線 ホログラムから再生した位相再生像を、図 3(d)に示す。上述した通り磁場情報φ_{mag}の影 響が大きいため、図3(d)のおおまかな特徴は 図3(c)と近い。しかしながら等高線の間隔や 方向に僅かな違いがあり、この相違点が歪情 報φ_{str}に起因している。実際に図3(c)と3(d) の位相再生像の差分を求めると、図3(e)の通 り、析出物の近傍を中心とした特徴的な位相 変化の様子を確認することができる。

同様の解析をα-Nd 析出物を含む領域の解 析にも適用した。図4(a)はNd₂Fe₁₄B相の002 反射を使って結像した暗視野電子線ホログ ラムを示す。-002 反射に相当するデータ(本 資料には未掲載)と位相再生像に関わる差分 を行い、α-Nd 析出物近傍で観測される østr の 抽出を行った。この*ø*strを表す画像データに微 分を施し、Nd₂Fe₁₄B 相の格子定数を参照した 一種の規格化を行ったところ、図 4(b)に示す 二次元歪マップを得た。図 4(b)は、Nd₂Fe₁₄B 相の c 面間隔に関わる歪を、同図に添えたカ ラースケールに従って表示している。位相デ ータに微分を施した結果画像のノイズが増 強され、図 4(b)の結果は 0.2%程度の不確か さを含んでいる。この点は、もともと像質の 乏しい暗視野電子線ホログラムを利用した 解析の問題点と言える。その一方で、図4(b) は Nd₂Fe₁₄B 相における歪分布の特徴を的確に 表している。例えば Nd₂Fe₁₄B 相の c 軸方向(黒 い矢印の方向)を基準にデータを眺め場合、 α-Nd 析出物の上下の部分では、それに接する Nd₂Fe₁₄B相の結晶格子(c面間隔)は伸張して いる。それとは相補的にα-Nd 析出物の左右の 領域では、Nd₂Fe₁₄B相の結晶格子(c面間隔) は圧縮している。

α-Nd 析出物に加えて、Nd₂O₃ 析出物や粒界

三重点など焼結磁石に含まれる様々な特異 点の解析を行った。その結果、磁性を担う Nd₂Fe₁₄B 相が最も大きく歪んでいた部分は α -Nd 析出物との接触箇所であり、その際の歪 量は 1%程度であった。最近行われた理論計算 によれば、Nd₂Fe₁₄B 相の結晶磁気異方性を大 きく変えるためには、1%に比べてはるかに大 きな歪を結晶格子加える必要がある。この点 を参照する限り、Nd-Fe-B 焼結磁石における 格子歪は、同磁石の保磁力機構を支配する主 要な因子ではないということが指摘される。

(2)その他の材料系の評価と今後の展望

本研究では、上述した Nd-Fe-B 磁石の解析 に加えて、高保磁力材料として期待される Mn 基合金や、強磁性形状記憶材料に関連した Ni 基合金の解析を行った。また研究期間の最終 年度には VO₂酸化物の観察も行い、歪情報と 電場情報に関わる研究も実施した。

(3)まとめと今後の展望

上記の通り、平成27年度から29年度の三 年間に亘って実施した研究により、暗視野電 子線ホログラフィーによる結晶格子歪と磁 性(磁束密度)の同時評価に関わる基盤技術 が整備された。従来、磁性材料では歪情報(歪 由来の位相変化)が強い磁場情報(磁場由来 の位相変化)に埋もれるため、暗視野電子線 ホログラフィーを使った実験は成功に至ら なかった。本研究では、暗視野電子線ホログ ラムの結像に用いるブラッグ反射の負号を 反転させると、歪情報はそれに合わせて負号 を変えるが、磁場情報の負号は変わらないと いう性質を利用して、両者を分離・抽出する プロセスを確立した。さらにこの手法を用い て Nd-Fe-B 焼結磁石における複雑な歪分布を はじめて明らかにし、強い関心が持たれてい た格子歪と保磁力の関係に対して重要な見 解を与えるなど、学術研究として十分な成果 を収めている。一方、上述したプロセスで歪 情報と磁場情報を分離するためには、実験で 明らかにした電子の位相変化の二次元マッ プ(位相変化の分布を表す画像データ)に微 分を施し、さらに異なる条件で取得したデー タの差分を評価するという作業が必要とな る。その結果、データのノイズは増強される 傾向にある。特に、弱いブラッグ反射を用い て結像する暗視野電子線ホログラムは本質 的に像強度が弱いため、取得される画像デー タの S/N 比やコントラストが乏しい。電子線 ホログラフィーによる位相解析の精度は、ホ ログラムの像質、即ち S/N 比、干渉縞のコン トラスト、一画素あたりの電子線検出量など 像質に関わる因子に依存する。暗視野電子線 ホログラフィーの解析精度を一層高めるた めには、情報科学の技術を導入して画像のノ イズを除去するなど、数理統計的な手法の活 用が極めて有効と思われる。

- 5. 主な発表論文等
- 〔雑誌論文〕(計 3 件)
- Y. Cho, S. Aritomi, T. Kanki, K. Kinoshita, N. Endo, Y. Kondo, D. Shindo, H. Tanaka, and <u>Y. Murakami</u>
 "Morphology of Phase-separated VO₂ Films Deposited on TiO₂-(001) Substrate" Mater. Res. Bull., 102 (2018) 289-293.
 查読有
- DOI: 10.1016/j.jalcom.2018.04.055
- ② R. Sawada, T. Yamamoto, K. Minakuchi, M. Nagasako, Y. Hayasaka, <u>K. Niitsu</u>, Y. Cho, R. Kainuma, and <u>Y. Murakami</u>
 - "Cellular Microstructures Superposed on Martensite Plates in Mn_{55.2}Ga_{19.0}Cu_{25.8} Alloy Showing Large Coercivity" Scripta Mater., 135 (2017) 33-36.
- 査読有
- DOI: 10.1016/j.scriptamat.2017.03.013
- ③ <u>Y. Murakami, K. Niitsu</u>, S. Kaneko, T. Tanigaki, T.T. Sasaki, <u>Z. Akase</u>, D. Shindo, T. Ohkubo, and K. Hono
- "Strain Measurement in Ferromagnetic Crystals using Dark-field Electron Holography"

Appl. Phys. Lett., 109 (2016) 193102(1-5). 査読有

DOI: 10.1063/1.4967005

〔学会発表〕(計3件)

<u>Y. Murakami</u>, <u>K. Niitsu</u>, Y. Kimura, R. Kainuma, D. Shindo

"Transmission Electron Microscopy Studies of Premartensitic Phenomena in Ti- and Ni-based Alloys"

International Conference of Martensitic Transformations, Chicago, USA, 2017.07.11

2 Y. Murakami

"Electron Holography Studies on Interface Magnetism and Lattice Strain in Nd-Fe-B Permanent Magnet" Electron Holography Workshop 2017,

Hatoyama, 2017.02.16

③ <u>Y. Murakami</u> "Analysis of Electromagnetic Field in Nanostructures"

The 36th Annual NANO Testing Symposium, Osaka, 2016.11.9

6. 研究組織

- (1)研究代表者
 村上 恭和(MURAKAMI, Yasukazu)
 九州大学・大学院工学研究院・教授
 研究者番号: 30281992
- (2)研究分担者(平成27年度) 赤瀬 善太郎(AKASE, Zentaro) 東北大学・多元物質科学研究所・講師

研究者番号:90372317

新津 甲大(NIITSU, Kodai)
 理化学研究所・創発物性科学研究センター・特別研究員
 研究者番号:90733890

(3)連携研究者(平成28,29年度)
 赤瀬 善太郎(AKASE, Zentaro)
 東北大学・多元物質科学研究所・講師
 研究者番号:90372317

新津 甲大 (NIITSU, Kodai)
 理化学研究所・創発物性科学研究センター・特別研究員
 研究者番号:90733890

(4)研究協力者

なし