科学研究費助成事業

平成 29 年 6 月 2 3 日現在

研究成果報告書

研究成果の概要(和文):本研究では,曲げモーメント及び軸力を受けるH形鋼梁の横座屈性能の把握を目的とし,母屋や屋根折板などの非構造部材が取り付く大空間構造物におけるH形鋼梁を対象として横座屈実験を行った。以下の主な成果についてまとめる。 1. 屋は折板などのH形鋼梁の上フランジ全体を拘束することで,拘束がない場合に比べて横座屈耐力の向上が

期待できる。 2. ブレースなどによりH形鋼梁の曲げモーメントに加えて軸力が作用することで柱及び梁を含む構造物全体の 保有水平耐力は上昇するものの,H形鋼梁の横座屈語の耐力劣化は拘束がなく,ブレースが取り付かない場合よ りも大きくなる危険性がある。

研究成果の概要(英文):Non-structural members such as roof purlin do not considered as lateral braces. They may not possess enough rigidity and strength to fully restrain lateral buckling deformation of H-shaped beams. Even so, non-structural members may be effective to increase a buckling load of structural members at some extent. Next, H-shaped beams connected to steel tensile braces are subjected to compressive axial forces in addition to flexural moment, so the buckling behavior is more unstable than that to only flexural moment. In this paper, The two results are described as follows, 1. The buckling strength for beams subjected to continuous braces as roof purlin due to bracing effect of roof purlin is larger than that no brace. 2. When beams are connected by tensile brace, its horizontal load bearing capacity of steel structures including beams are larger than beams are not be connected by brace. But the buckling strength for beams subjected to tensile brace may be lower than no brace.

研究分野:工学

キーワード: H形鋼梁 横座屈 曲げモーメント 圧縮軸力 引張ブレース 非構造部材 連続補剛

1. 研究開始当初の背景

現在,大空間構造物の地震時の損傷メカニズムについては明らかにされているが,構造部材のみで構成された構造物を対象とした研究である。構造部材には非構造部材(図 1)が取り付いており,非構造部材が取り付くことで構造部材の座屈に対する補剛効果が期待できる。

大空間構造物を構成する構造部材とし、施工性や経 済性の観点から H 形鋼梁が多用され、近年の構造部材 の大スパン化に伴って、梁スパンが 10~20m、梁せいが 1000mm 以上の大断面梁が多く用いられつつある。梁が H 形鋼梁のような開断面の場合、梁の横座屈が問題とな るため、現行の設計法では横座屈を防ぐために材長方 向に複数の横補剛材を設けることになる。しかし、複数 の小梁の設置は、施工性が低下し、非経済的である。

一方で、巨大地震に対して建物の損傷を軽減でき る制振ブレースは、取り付けが容易であり、履歴モ デルが明確であるため、近年は鋼構造建物に多く用 いられている。しかし、梁にはブレースによる引張 力の水平成分が大きな軸力として作用する。圧縮軸 力と曲げモーメントを同時に受ける H 形鋼柱の座屈 挙動に関する研究は行われており、鋼構造限界状態 設計指針・同解説¹⁾では、H 形鋼柱の曲げ座屈に対す る座屈補剛の補剛剛性や補剛力の要求値が提示され ている。しかし、上フランジ補剛の多い梁の横座屈 に対して柱の補剛規定を適用するのは難しい。

2. 研究の目的

鉄骨ラーメン骨組内の H 形鋼梁には,長期荷重と 地震荷重により曲げモーメントが作用し,設計規準類 ¹⁾⁻³⁾では,圧縮応力が生じる上フランジが補剛される ことを想定している。引張ブレースが取り付く構面 における H 形鋼梁の横座屈荷重は,梁に作用する曲 げに加え,圧縮軸力が作用することで低下する。圧 縮軸力と曲げを受ける H 形鋼梁の横座屈性能は明ら かにされているが⁴⁾,等曲げのみの検討である。

本研究では曲げモーメント及び軸力を同時に受けるH形鋼梁の横座屈性能の把握を目的とする。

3. 研究の方法

1年目は屋根折板が取り付く H 形鋼梁の部分架構

構造部材と非構造部材

載荷実験を行い,屋根折板による梁の横座屈性状を 把握する。2年目は,部分架構に引張ブレースを取り 付けることで,逆対称曲げモーメントに加え,引張 ブレースによる軸力が同時に作用するH形鋼梁の横 座屈耐力に及ぼす連続補剛材の補剛効果を明らかに する。また,弾塑性大変形解析を行い,実験結果と ともに曲げモーメントと軸力を受けるH形鋼梁の弾 塑性横座屈性状を把握する。

4. 研究成果

この報告書では,ダンパーが取り付く梁の横座屈 性能を明らかにすることを目的とし,研究成果につ いて下記の項目ごとに説明する。

- [1] ブレース軸力と逆対称曲げモーメントを受ける H形鋼梁の部分架構横座屈載荷実験
- [2] 弾塑性大変形解析による連続補剛された H 形鋼 梁の弾塑性横座屈性状の把握

[1] ブレース軸カと逆対称曲げモーメントを受けるH形鋼梁の部分架構横座屈載荷実験

図2に実験装置全体図を示す。1000kN ジャッキ を用いて実験装置に水平方向の強制変位を与えるこ とで,試験体におけるH形鋼梁に逆対称曲げモーメ ントを発生させ,載荷実験を行う。試験体における 梁断面はH-150×75×5×7で,鋼種はSS400材とし, 横座屈細長比及び補剛形式をパラメータとする。試 験体と折板の接合方法は,実際の屋根折板の接合方 法に準じて,梁に溶接接合したタイトフレームと折 板を山部分でボルト接合とする(図2(c-1))。折板の 端部には図2(c-2)のように折板受けフレームを設置 し,その上に載せた溝形鋼を丸鋼に載せることで水

平方向にピンローラー支持とする。

載荷は、H 形鋼梁の端部の曲げモーメントが M_p に 達するときの載荷点の水平変位 δ_p を載荷点から柱脚 のピンまでの距離 l_h で除した回転角 θ_p で制御する。載 荷プログラムは正負交番漸増繰返し載荷とし、無補 剛梁の θ_p の倍数として $\pm \theta_p$, $\pm 2\theta_p$, $\pm 3\theta_p$, $\pm 4\theta_p$ の各 振幅で1回ずつ行った。梁に軸力を作用させる場合 には、一層 N型ブレース架構で柱の反曲点高さより 上部部分を想定し、図2(c-1)に示すように梁中央よ り試験体右端部に向けて引張ブレースを取り付け、 単調載荷を行う。また、引張ブレースより H 形鋼梁 に作用する軸力は梁の降伏軸力の20%程度を想定し ている。試験体一覧を表1に示す。表中の横座屈細 長比は次式より求められる⁵。

$$\lambda_{1} = l / \sqrt{I / A_{1}} \quad (A_{1} = 1 / 6 A_{w} + A_{f})$$
 (1)

表 2 に素材特性を示す。素材特性はフランジより JIS12B 号試験片,ウェブより JIS5 号試験片を3本ず つ切り出し,引張試験結果の平均値より求めた。変 形は載荷点直下の水平変位を接触型変位計で,横座 屈による面外変形量はワイヤー変位計で計測した。

図3に荷重変位関係の履歴曲線を示す。試験体の H形鋼梁端部に作用する曲げモーメント MをH形鋼

梁の全塑性モーメント M_p で除した値 M/M_p とする。 横軸は柱の回転角を全塑性モーメント M_p に達すると きの θ_p で除した回転角比 θ/θ_p である。プロットは最大 荷重点を示している。全ての梁で正載荷時に耐力低下 が見られ, 無補剛である(a)の N-25 は, 4 サイクル目, (b)の N-35 は、3 サイクル目に最大耐力を迎えて、プロ ットの最大荷重以降の荷重低下率は、N-25 の場合 4*θ*_p 時で30%、N-35 の場合3*θ*_b時で15%程度となっている。

一方,連続補剛である C-25, C-35 はともに 4 サイ クル目に最大荷重に達し,無補剛である N-25, N-35 と異なり,耐力がゆるやかに低下した。4 サイクル目 の最大荷重に対する 4*θ*,時の耐力低下は C-25 で 4%, C-35 で 8%程度となっている。

図 4 に正載荷時の骨格曲線を示す。縦軸は(a)がロードセルより求めた水平力 P を無補剛の場合における H 形鋼梁の端部が全塑性モーメント M_p に達するため に必要な水平力 P_p で除した値,(b)が試験体の H 形鋼 梁端部に作用する曲げモーメント M を H 形鋼梁の全 塑性モーメント M_p で除した値とする。横軸は柱の回 転角比 θ/θ_p である。無補剛(以後 N-35),連続補剛(以 後 C-35)の骨格曲線は 2 サイクル目以降,梁が初めて経 験する荷重をつなぎ合わせたものであり²⁾,ブレース が取り付く連続補剛(以後 C-B-35)は単調載荷の結果 である。(b)の右縦軸は H 形鋼梁の x 軸方向の水平変位 を上下フランジ間距離で除した捩れ変形 β である。(a) の水平力 P は N-35,C-35 の場合には両柱のせん断力 Q に相当するが,ブレースありの C-B-35 の場合には Q と ブレースに作用する軸力 N の余弦の和 $Q+Ncos\theta_b$ に相

当する。C-35 に対して C-B-35 の水平力 P は 2 倍 以上となっている。(b)で連 続補剛された C-35 は,最 大荷重付近まで細黒破線 で示す捩れ変形がほぼ拘 束されており,歪硬化によ る荷重上昇が見られる。細 黒実線で示すブレースあ りの C-B-35 は最大荷重に 達した θ/θ_p =1.6 付近より急 激に捩れ変形が上昇し,ブ レースなしの C-35 に比べ て耐力の低下が大きい。さ らに, θ/θ_p =2.0 の時点で無

補剛の N-35 より C-B-35 の耐力が低下している。

図5に折板とH形鋼梁の上フランジの正載荷時の軸 歪の履歴を示す。縦軸は試験体の上フランジの軸歪及 び図6の折板の計測位置でx/l_a=0.1の位置における梁長 方向(z方向)の軸歪,横軸は載荷点の水平変位であ り,最大荷重時までの各ループをつなぎ合わせたもの である。(a)は試験体 C-25,(b)は試験体 C-35,(c)は試 験体 C-B-35の場合である。なお,折板の歪値は板の表 裏で計測した値の平均である。(a)~(c)によらず,上フラ ンジの軸歪に対して屋根折板の軸歪の値は極めて小さ く,折板はH形鋼梁の面内曲げに対して軸方向応力の 負担が小さいことが分かる。

図 7 に試験体 C-35 の±θ_p, 4θ_p と最大荷重時 M_{max}の面 外方向 (x 方向)の軸歪分布を示す。縦軸は図 7 に示す

計測位置, 横軸は x 方向の軸歪で表裏で計測した値の 平均である。(a)は屋根折板の谷部分の値,(b)は山部分 の値である。(a)の梁に接している谷部分は,梁の捩れ 変形に伴い,フランジに強制変形させられ,板曲げ変 形が生じるため面外方向応力が発生しているが,(b)の 剛性の小さい山部分は,剛性の低いタイトフレームか つボルト接合のみであるため局所変形しか生じず, x/l_a=0.1 の位置ではほぼ応力を伝達されていない。

C-B-35の場合, **C-35**より2倍程度谷部分の歪が大き くなっている。これは, (b)より **C-B-35**では最大荷重後 耐力が低下すると同時に捩れ変形が急激に大きくなっ ており,耐力低下後の*θ*/*θ*, =2.0では捩れ変形に伴う上 フランジの変形が**C-35**よりも大きくなったためである。

[2] 弾塑性大変形解析による連続補剛されたH形鋼 梁の弾塑性横座屈性状の把握

図 8 に数値解析モデルを示す。数値解析は有限要 素法汎用プログラム ABAQUS6.13⁶による弾塑性大 変形解析である。鋼種を SS400 とし,H 形鋼梁の素 材特性にはバイリニア型を適用している。補剛バネ 要素は弾性とし,数値解析における補剛バネ間隔は, 実験と同様な折板の間隔で*l*_b=140mm とし,屋根折板 を回転バネ要素とし,バネ要素1つ当たりの回転補剛 剛性を単位幅当たりの回転補剛剛性 *k*_βに補剛間隔 *l*_b を乗じた *k*_β*l*_b (kN mm/rad)とする。また,バネ要素と 梁を剛体要素で連結している。H 形鋼梁の材端支持条 件は上下フランジをそれぞれ剛体とし,図8のように フランジ中心及び各ウェブ節点で*x*方向の変位を固定 とする。さらに,材端支持条件はウェブ中心でピン 及びピンローラー支持とし,端部の反りを固定として

図8 数値解析モデル

いる。梁の初期不整は図9に示すとおりである⁷⁾。

 $M_1 \ge M_2$ とし,逆対称曲げモーメントの場合で $M_2/M_1 = 1.0$ となる。次式に示すように梁左端に作用 する曲げモーメント M_1 と軸力Nより梁端に生じる応 力を σ_M と σ_N とし,その和より上下フランジの応力を σ_1 , σ_2 とする。このとき,次式より上下フランジの 応力比p が求められる⁸⁾。

 $p = \frac{\sigma_2}{\sigma_1} = \frac{\sigma_M - \sigma_N}{\sigma_M + \sigma_N} \qquad (2), \quad \sigma_M = \frac{M_1}{Z}, \sigma_N = \frac{N}{A_0} \qquad (3)$

ここで, Z は梁の断面係数, A₀ は梁の全断面積で ある。

図 10 に H 形鋼梁の弾塑性横座屈性状を示す。縦軸 は上フランジに作用する縁応力度 σ₁ を降伏応力度 σ_y で除した値,横軸は, x 軸回りの材端回転角 θ を降伏 時の材端回転角 θ_y で除した値である。図中のプロッ トは,フランジの最大軸荷重を示している。N-35 及 び C-35 は最大荷重後も緩やかに荷重低下しているの に対して, C-B-35 は降伏以前に最大荷重となり,そ れ以降荷重が急激に低下している。

図 11 に弾塑性横座屈応力度と梁端の応力比 p の関係を示す。縦軸は弾塑性横座屈応力度 σ_{cr}を梁の降伏

応力度 σ_v で除した値,横軸は(2)式の応力比pとする。 σ_{cr}は弾塑性大変形解析結果より梁端に作用する最大 応力とする。無補剛の場合にはほぼ解析結果と実験 結果が等しいが、連続補剛の場合には数値解析結果 に比べ、実験結果が若干高くなっている。補剛の有 無によらず p>-0.7 では p が大きくなるほど, 弾塑性横 座屈応力度は低下していき, 無補剛と連続補剛の場合 の横座屈応力度の差が小さくなっている。p≦-0.7 で は補剛されていない下フランジの圧縮領域で座屈変 形が生じる。一方で, p>-0.7 では p が大きくなるほど 下フランジの圧縮領域が大きくなり, さらに本研究で は補剛箇所の水平拘束を自由としているため,上下フ ランジともに水平変形が生じ、断面が捩れにくくなる ことから,回転拘束効果が低下し,座屈応力の上昇が 小さくなる。また,全塑性モーメントによる頭打ちに より無補剛と連続補剛の座屈応力度の差は小さい。 参考文献

- 1) 日本建築学会:鋼構造限界状態設計指針·同解説, 1998
- 2) 日本建築学会:鋼構造制振設計指針, 2014.11
- 3) 日本建築学会:鋼構造座屈設計指針, 2009
- 4) 杉田弥生,吉野裕貴,木村祥裕:軸力と等曲げモーメントを受ける連続補剛H形鋼梁の弾性横座屈,日本鋼構造協会,鋼構造年次論文報告集,第23巻,pp.693-696,2015.11
- 5) 鈴木敏郎:H形鋼部材の横座屈応力度について、日本 建築学会論文報告集,第229号,pp.43-51,1975.3
- 6) ABAQUS/Standard User's Manual version6.13.1
- 7) 木村祥裕,吉野裕貴,小川淳子:引張側フランジ補剛
 されたH形鋼梁の横座屈荷重に及ぼす連続補剛材の
 水平・回転拘束効果と補剛耐力,日本建築学会構造系
 論文集,683号,pp.193-201,2013.1
- *村祥裕,松尾健志,吉野裕貴:軸力と等曲げモーメントを受ける上フランジ補剛H形鋼梁の弾塑性横座屈応力度評価,日本建築学会構造系論文集,第79巻703号,pp.1299-1308,2014.4

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者には下線) 〔雑誌論文〕(計 4件)

- <u>吉野裕貴</u>,木村祥裕:繰返し載荷を受け屋根折 板つきH形鋼梁の横座屈載荷実験,日本鋼構造 協会,鋼構造年次論文報告集,第 24 巻, pp.810-813,2016.11,査読あり
- 木村祥裕,杉田弥生,<u>吉野裕貴</u>:等曲げモーメントと圧縮軸力を受ける上フランジ連続補剛 H 形鋼梁の横座屈荷重と連続補剛材の水平・回転 拘束効果,日本建築学会構造系論文集,第726 号,pp.1321-1331,2016.8,査読あり
- 木村祥裕,吉野裕貴:曲げモーメント勾配を受ける上フランジ連続補剛H形鋼梁の横座屈荷重に及ぼす連続補剛材の水平及び回転拘束効果,日本建築学会構造系論文集,第81巻726号,pp. 1309-1319,2016.8,査読あり
- 4) 杉田弥生, <u>吉野裕貴</u>, 木村祥裕: 軸力と等曲げ モーメントを受ける連続補剛H形鋼梁の弾性横 座屈, 日本鋼構造協会, 鋼構造年次論文報告集, 第 23 巻, pp.693-696, 2015.11, 査読あり

〔学会発表〕(計 2件)

- <u>吉野裕貴</u>,杉田弥生,木村祥裕:屋根折板が取 りつくH形鋼梁の逆対称曲げモーメント横座屈 載荷実験日本建築学会大会学術講演梗概集, pp.965-966,2016.8,福岡県,福岡市
- 2) 杉田弥生,<u>吉野裕貴</u>,木村祥裕: 圧縮軸力と等 曲げモーメントを有する H 形鋼梁の弾塑性横 座屈荷重に及ぼす連続補剛材の拘束効果-その 2 連続補剛材の水平補剛力・補剛モーメント,日 本建築学会大会学術講演梗概集,pp.907-908, 2015.9,神奈川県,平塚市

6. 研究組織

(1)研究代表者
 吉野 裕貴(YOSHINO Yuki)
 仙台高等専門学校・建築デザイン学科・助教
 研究者番号: 707564