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研究成果の概要（和文）：A Brain Machine Interface (BMI) system that integrates an Android robot was 
successfully developed. Experimental results suggest that android feedback based BCI training 
improves the modulation of sensorimotor rhythms during motor imagery task to improve the operability
 of the BMI system. 

研究成果の概要（英文）：A Brain Machine Interface (BMI) system that integrates an Android robot was 
sucessfully developed. The android robot provided realistic visual feedback to the user so that 
he/she could concentrate better and modulate his/her brain activity. A new training protocol that 
addresses the deficiencies of the classical approach and takes advantage of body-abled user 
capabilities was proposed. Experimental results suggest that android feedback based BCI training 
improves the modulation of sensorimotor rhythms during motor imagery task. Moreover, we discovered 
that the influence of body ownership transfer illusion towards the android induced thrhough a haptic
 interface might have an effect in the modulation of event related desynchronization/synchronization
 (ERD/ERS) activity.

研究分野： Brain Computer Interface

キーワード： BCI
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１．研究開始当初の背景 

Non-invasive Brain Machine Interface 
(BMI) systems based on 
electroencephalography (EEG), have been 
used to control a robotic wheelchair, 
home appliances or humanoid robots. The 
classical approach of a BMI consists in 
training a classifier to detect changes 
of brain activity when mental motor 
imagery (i.e. move left/right hand) is 
voluntarily generated. Subsequently, 
detected brain activity is translated 
into appropriate commands for a computer 
or robot. This approach highly depends on 
1) the system’s ability to detect proper 
motor imagery with accuracy, and 2) the 
subject’s ability to generate the 
appropriate brain activity that can be 
recognized by the system. 

In past research, a wide variety 
of methodologies for extracting useful 
EEG features and detecting motor imagery 
have been proposed with middle-low 
acuracy rates. During BMI operation, 
these medium-low accuracy rates would 
translate into an unreliable control of 
the device and may produce user 
disappointment. Therefore, it is 
essential to develop new algorithms to 
improve motor imagery classification 
accuracy to enhance user experience. 
Moreover, it is also essential to train 
the user to module his/her brain 
activities to operate a BMI. Even if a 
sophisticated classification algorithm 
is developed, if the user cannot generate 
the appropriate EEG brain patterns, the 
system will not work. For this reason, 
novel BMI training methodologies that 
have an enhancing effect on the 
operator’s brain activity are not only 
important but necessary. As previously 
mentioned, operating a BMI can be 
considered as a skill that needs to be 
acquired through a learning process. 
However, classical training 
methodologies might not be suitable for 
the diversity of learners — since not 
everybody learns the same way. Therefore, 
it is necessary to investigate novel 
training methods that address the 
deficiencies of the classical training 
approach and takes advantage of 
body-abled user capabilities.  
 
２．研究の目的 
In this research, we propose a BMI system 
based on motor imagery that will allow a 
user to tele-operate a humanoid robot. 
Although brain activity detection 

algorithms are important to operate the 
robot, if the user does not generate 
efficient brain signal patterns, the 
system will not work. Therefore, first we 
investigate BCI training protocols that 
make the user improve their brain 
activity based on realistic feedback. 
The proposed training protocol addresses 
some of the deficiencies of the classical 
approach and takes advantage of 
body-abled user capabilities. The 
human-like Android robot in this 
research not only provides a realistic 
visual feedback, but enables the 
subjects to have the kinesthetic 
experience and a demonstration of 
operation rather than a simple 
instructed motor imagery. The brain 
analysis and signal classification is 
performed using traditional algorithms 
as well as newly developed algorithms 
based on deep learning. 
 
３．研究の方法 

We conducted a Motor Imagery based 
BCI experiment with the main goal of 
finding the difference in performance and 
changes of brain activity for two groups 
of users: 1) users who learned to operate 
a BCI through the classical training 
protocol (C-BCI), and 2) users who learned 
through the proposed Android-based 
training protocol (A-BCI). This 
experiment was conducted with the approval 
of the Ethics Review Board of Advanced 
Telecommunications Research Institute 
International (ATR), Kyoto, Japan. 

Thirty healthy participants were 
recruited for the experiment most of whom 
were university students. Data from three 
participants was not used because it was 
very noisy and the remaining data from 
twenty-seven participants (17 males, 10 
females) in the age range of 19-25 (M = 21.5, 
SD = 1.69) was used. All participants were 
naive to the research topic and had never 
used a BCI before. Participants were 
randomly assigned to one of the two groups 
giving a total of 13 participants for C-BCI 
group and 14 for A-BCI group. Subjects 
received an explanation of the experiment, 
signed a consent form and were guided to 
the room where the Android was seated. 
Participants had the opportunity to 
experience for the first time the presence 
of the Android robot and physically touch 
its hands and face. At the end, 
participants answered a brief survey and 
were paid for their participation 

Participants sat in a comfortable 



chair looking down a screen strategically 
placed a level above their legs, and were 
asked to remain motionless. They wore an 
EEG electrode cap and 27 EEG electrodes 
were placed over their primary 
sensory-motor cortex according to the 
international 10-20 system (FT7, FC5, FC3, 
FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, 
C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, 
CPz, CP2, CP4, CP6, TP8). A reference 
electrode was mounted on the right ear and 
a ground electrode on the forehead. 
Participants were randomly assigned to one 
of the two groups (C-BCI or A-BCI) and 
proceeded to conduct the corresponding 
training while a g.USBamp biosignal 
amplifier (Guger Technologies) recorded 
their brain activity. During the 
experiment, participants were asked to 
relax and not to move to avoid artifacts.  
Classical Training Protocol (C-BCI) 
The classical training protocol initially 
proposed by the Graz group [1] consists of 
a calibration phase for training the 
system and a training phase for training 
the user before the actual evaluation 
phase for the intended BCI application. In 
our experiment, we emulated Graz protocol 
by using the same three phases: 
calibration, training and evaluation.   
Calibration - Calibration consisted of 40 
trials. The timing of events during each 
trial was performed in the same way 
proposed by Graz protocol, that is: each 
trial lasted 7 seconds and started with the 
display of a fixation cross shown in the 
center of screen. Participants were asked 
to rest during the fixation cross. After 
2 seconds, a warning was given in form of 
a “beep” sound. From second 3 to 4.25, 
an arrow pointing to the left or right was 
shown and depending on its direction the 
participant was instructed to imagine a 
left or right hand movement. This phase was 
performed without feedback and the 
recorded data was used to set up a subject 
specific classifier. 
Training - In the same way as calibration 
phase, for training phase, 40 trials were 
conducted and the timing of events were 
kept the same. However, during this phase 
participants received a unimodal visual 
feedback indicating the mental task 
recognized by the classifier together with 
the confidence in this recognition. The 
feedback was represented by an extending 
bar that extended in the required 
direction if the mental task was correctly 
recognized and extended in the opposite 
direction otherwise. The length of the bar 

Figure 1. a) Calibration and training phases. b) Evaluation 

phase 

Figure 2. Experimental setup 

 
extension was proportional to the 
classifier's confidence in its decision 
(Fig. 1a). 
Evaluation - The evaluation phase is when 
participant's motor imagery skill was 
tested using the intended BCI application 
with its corresponding feedback. In our 
experiment, the intended application 
consisted in controlling the hands of an 
android robot, and thus the experimental 
setup shown in Fig. 2 was prepared and 
trial timing shown in Fig.1b was 
implemented for a total of 40 trials. 
 
Android Feedback Training Protocol 
(A-BCI)} 
The proposed Android Feedback based 
training protocol consisted of four 
phases: pre-training, training, 
calibration and evaluation. The order of 
the phases was proposed this way in order 
to allow the subject to: 1) rehearse the 
kinesthetics of hand movements and 
memorize the physical sensation 
(Pre-training), 2) practice mental motor 
imagery by remembering the sensation of 
the previous phase in order to generate 
well-defined brain activation patterns 
(Training), 3) recreate motor imagery 
practiced in the previous phase and use the 
data calibrate the classifier 
(Calibration), and 4) put to practice the 
learned Motor Imagery skill (Evaluation). 
Each phase consisted of 40 trials, each 
lasting 7 seconds. In the same way of the 
evaluation phase on the classical training 
protocol, all phases were conducted using 



the experimental configuration shown in 
Fig. 2. 
Pre-training - This phase was designed to 
have the user perform motor imagery 
followed by kinesthetic motor actions for 
a goal oriented task. After wearing the 
electrode cap and be seated in front of the 
display, the user was asked to wear two 
motion capture markers on the index finger 
of each hand using finger sacks. A 3D 
motion-capture system consisting of three 
Motion Analysis Hawk Digital Cameras and 
EVaRT motion-capture software was used to 
track the marker position. Whenever a ball 
lighted up, participant was asked to 
imagine grasping the ball for 2 seconds and 
then slowly physically move his/her own 
hand with a grasp motion. After tracking 
the position of the markers, the motion 
capture system sent the corresponding 
control command to the robot, providing 
visual feedback of the robot actions. 
Participants were told that EEG data 
collected during this phase was used to 
train the classification system.  
 
 Training - For this phase, motion capture 
markers were removed and participants were 
instructed not to move their hands during 
the experiment. During this phase, 
participants had to practice motor imagery 
for the corresponding visual cue observed 
through the display and received visual 
feedback of the moving hands of the robot.  
 
Calibration -In the calibration phase, 
participants had to perform motor imagery 
after the visual cue, but this time the 
robot did not move the hands, thus omitting 
the feedback. EEG data from this phase was 
used to setup a user-depended classifier 
to be used in the evaluation phase. 
 
Evaluation - During the evaluation phase, 
non-biased visual feedback was provided to 
the participant in accordance to the real 
output of the classifier.           
 
Classification 
The acquired data were processed online 
under Simulink/MATLAB (Mathworks) for 
real-time parameter extraction. This 
process included sampling at 128 Hz, 
cutting off artifacts by a notch filter at 
60 Hz, bandpass filtering between 0.5 and 
30 Hz. Although the initial plan was to 
develop deep learning algorithms to 
classify the data, after a deep research 
on the various approaches it was 
determined that given the small training 

set (only 40 trials), deep learning 
algorithms were not the optimal solution 
for this problem. Therefore, we adopted 
another algorithm called common spatial 
pattern (CSP) for a time range of 4s to 7s 
for every trial, in order discriminate 
Event Related Desynchronization (ERD) and 
Event Related Synchronization (ERS) 
patterns associated with motor imagery 
task. 
 
CSP method is known to be based on the 
simultaneous diagonalization of two 
covariance matrices. During each right or 
left imagery movement, the decomposition 
of the associated EEG led to a new time 
series, which was optimal for the 
discrimination of two populations. The 
patterns were designed such that the 
signal from the EEG filtering with CSP had 
maximum variance for the left trials and 
minimum variance for the right trials and 
vice versa. For classification, the 
variances of left and right trials were 
extracted as reliable features in order to 
build a feature vector and construct a 
linear classifier. In order to 
discriminate between left and right 
imaginations, the output probabilities of 
the linear classifier were mapped to a 
range of [-1,1], where -1 denotes the 
extreme left and 1 denotes the extreme 
right. 
Brain Activity Data Analysis 
To quantify the impact of the two types of 
training protocols, we computed 
time-frequency maps using the data for 
each group separately after removing local 
peak artifacts by artifact subspace 
reconstruction (ASR). EEG oscillations in 
the mu frequency band (8-13 Hz) recorded 
over pre-motor cortex are known to be 
influenced by imagining of motor actions. 
For all EEG epochs obtained during motor 
imagery segment in each trial (seconds 4 
to 7) and rest segment in each trial 
(seconds 0 to 2), the integrated power was 
computed using a fast Fourier transform. 
Power in the mu frequency band at scalp 
locations corresponding to left and right 
sensorimotor cortex (C3 and C4) during 
motor imagery was compared to power during 
the baseline (rest) condition. This was 
done by computing the ratio of  ERD over 
ERS. 
Negative and positive values of ERD/ERS 
ratio correspond to ERD and ERS 
accordingly. mu rhythm is defined as 
oscillations measured over sensorimotor 
cortex, thus only data from C3 and C4 are  



presented. A ratio was used to control for 
variability in absolute mu power because 
of individual differences such as scalp 
thickness and electrode impedance, as 
opposed to differences in brain activity. 
 
４．研究成果 
Figures 3 (a) and (b) show the average 
ERD/ERS ratio from C3 and C4 channels for 
each participant during the evaluation 
session plotted against their 
corresponding performance. In order to 
appreciate the changes of ERD/ERS ratio in 
the mu band throughout the session, also 
known as mu suppression, the average 
ERD/ERS ratio is shown for the first half 
(1st 20 trials) and second half (2nd 20 
trials) of the session along with the 
corresponding centroids. Pearson 
product-moment correlation of mu 
suppression and performance computed for 
the first half indicates a moderate 
downhill linear correlation in the A-BCI 
group (r=-0.56) and almost no linear 
correlation in the C-BCI group (r=0.19). 
However, in the second half, the A-BCI 
group shows a stronger downhill 
correlation (r=-0.83) and the C-BCI group 
shows a moderate correlation  (r=-0.33). 
Figures 3 (c) shows the centroid shift from 
the first half to the second half of the 
session as vector. Compared to C-BCI group, 
A-BCI group clearly shows a larger 
centroid shift in direction to a stronger 
mu suppression and higher performance. 
 
We performed t-tests to compare the mu 

suppression of C-BCI and A-BCI groups as 
indicated by a ratio obtained from the left 
and right hemisphere electrodes during the 
corresponding motor imagery (C3 for right 
MI and C4 for left MI). Fig. 4 shows that 
the mu suppression in both left and right 
hemispheres of the A-BCI group was 
significantly larger than the mu 
suppression of the C-BCI group in overall 
training, calibration and evaluation 
phases:  A-BCI<C-BCI$ (Calibration: C4 
t(26) =-0.52, p=0.013;   C3 t(26)= -0.29, 
p=0.033; Training:  C4 t(26) =-0.23, 
p=0.029; C3 t(26)= -0.29, p=0.047; 
Evaluation: C4 t(26) =-0.60, p=0.005; C3 
t(26)= -0.29, p=0.056. These results 
suggest that subjects of the A-BCI group 
where able to modulate the sensory-motor 
rhytms better than subjects of the C-BCI 
group.  
 
Subject's Online Performance 

Figure 3. Average ERD/ERS ratio (x axis) from C3 and C4 channels combined for each participant during the evaluation session 

plotted against their corresponding performance (y axis): (a) First half (1st 20 trials) and (b) Second half (2nd 20 trials) 

of the session. 

Figure 4. ERD/ERS ratio during each of the experiment 



The performance metric consisted of the 
percentage of correct classifications 
during the evaluation phase only. Results 
(Fig. 5) showed that participants of A-BCI 
group had a slightly better performance 
(Mean=61.38, SD=9.82) as compared to the 
C-BCI group (Mean=52.38, SD=10.21) with a 
statistical difference of p=0.025. A 
permutation test on the data from the two 
conditions was also conducted (10,000 
permutations, alpha=0.05) giving as a 
result a probability of 2.13 ( p=0.021) of 
how often the observed result would occur 
if it was random; thus we conclude that the 
difference in performance between the two 
groups is statistically significant.   
 
Conclusion 
In this research, we proposed a BMI system 
based on motor imagery that will allow a 
user to tele-operate a humanoid robot. To 
operate the BMI, it is important for the 
user to be able to generate appropriate 
brain signal patterns that can be 
recognized by a classification algorithm. 
Generating these brain patterns are not a 
trivial matter and thus, most of the 
research was dedicated to finding 
effective ways to train the user to 
generate optimal brain signal patterns for 
operating a BMI. Therefore, we 
investigated BCI training protocols that 
make the user improve their brain activity 
based on realistic feedback. The proposed 
training protocol addresses some of the 
deficiencies of the classical approach and 
takes advantage of body-abled user 
capabilities. The human-like Android 
robot in this research not only provided 
a realistic visual feedback, but enabled 
the subjects to have the kinesthetic 
experience and a demonstration of 
operation rather than a simple instructed 
motor imagery. The higher MI 
classification performance and stronger 
mu suppression achieved by the 
experimental group who used the proposed 
training protocol indicate that in overall 

there was a positive effect and 
improvement in the usage of the BMI. 
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