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研究成果の概要（和文）：小脳プルキンエ細胞を主モデルに、ニューロンの樹状突起でのイオンチャネルの確率
的な相互作用を研究するためのコンピュテーショナル方法、プログラム、シミュレーションを開発。 局所的電
流刺激に対する電位反応を利用して、樹状突起を機能的ユニットに区画化するアルゴリズムを開発し、樹状突起
形態構造と局所的電位信号伝達の関係を研究。進化的アルゴリズムを用いたイオンチャネルモデル最適化プログ
ラムの開発。並列STEPSシミュレーションエンジンを開発。これをスーパーコンピュータで使用し、樹状突起全
体とその中での確率的プロセスを含むプルキンエ細胞のモデルをシミュレートして、細胞の局所的、全体的確率
的挙動を観察。

研究成果の概要（英文）：We developed computational tools, methods, and simulation models to study 
the effect of stochastic ion channel interactions in dendrites, using the cerebellar Purkinje cell 
as a primary model. We developed a novel algorithm to discover “functional subunits” in a 
dendritic tree, based on the extent of depolarization by a synaptic input within each subunit. This 
demonstrated that neuronal morphology impacts how synaptic inputs and ion channels interact with 
each other via membrane potential, leading to nonlinear computation. We also developed a program to 
build a model of an ion channel from experimental data, by using the evolutionary algorithm. 
Finally, we developed a parallelized version of the STEPS simulator that can simulate stochastic 
processes in a neuron with complex 3D geometry, by using a cluster supercomputer. Using this, we ran
 a simulation of a Purkinje cell with a full dendritic tree, which vividly showed regional details 
of how stochasticity impacts cellular dynamics.

研究分野： 神経科学
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１．研究開始当初の背景 
Ion channels are fundamental building 
blocks of the active membrane and 
computational function of a neuron. Their 
dynamical activeness originates from the 
voltage-dependent and/or 
ligand-dependent gating.  

In early days, it was controversial 
how many active ion channels are present 
in a dendritic tree, a major part of a neuron 
that is crucial for integrating synaptic 
inputs. Patch clamp studies revealed that 
many different types of active ion channels 
are abundant in dendrites (Llinas and 
Sugimori, J Physiol, 1980), contributing to 
active processing of synaptic inputs before 
reaching a site of action potential initiation, 
so-called, “dendritic computation” (Hofman 
et al, Nature, 1997; Mel, Neural Comput, 
1994). 

Crucially, ion channels often 
cooperate with each other to synergistically 
define certain computational functions. For 
example, voltage-dependent channels are 
affected by the membrane potential that 
are contributed by the current introduced 
by other channels. Calcium-activated 
potassium (KCa) channels are activated by 
calcium ions flowing through nearby 
calcium-permeating channels (Womack et 
al, J Neurosci, 2004). Also, some 
voltage-dependent potassium (Kv) 
channels have the Kv channel-interacting 
proteins (KChIP) that enable modulation 
of the activation/inactivation of the 
channels by binding of calcium ions from 
other channels (An et al, Nature, 2000). 

These different types of 
interactions should lead to different 
characteristics. As an electric signal 
spreads widely and rapidly, the 
voltage-mediated interaction is relatively 
global, and therefore can be important in 
an extended domain. In contrast, the 
calcium-mediated interaction crucially 
depends on how calcium ions diffuse and 
react with calcium buffers, which sets how 
many calcium ions can effectively reach 
calcium-binding domains of a channel, and 
therefore becomes more local. 

Another important aspect of such 
local interactions is that they can be quite 
stochastic. This is because the number of 
calcium ions that mediate the interaction 
can be low in a small domain in dendrites, 
and also because a single interaction is 
stochastic by itself (Anwar et al., J 
Neurosci, 2013). 

However, there have not been 
many studies that comprehensively 

investigated how different ion channels 
interact locally and globally in dendrites. 
First, measuring activation certain ion 
channels in experiments is still very 
challenging in dendrites due to their size. 
Second, computational modeling has been 
also difficult since there has not been any 
tool to simulate ion channel activation and 
interaction with spatial dendritic geometry 
and also with full stochastic effects. 
 
２．研究の目的 
Our research aimed to develop 
computational methods and tools to 
investigate the interactions among active 
ion channels in neuronal dendrites, with 
emphases on elucidating the effects of 
dendritic geometry and stochasticity.   

We aimed ultimately at building 
and running a neuron model with a full 
dendritic tree, reconstructed from imaging 
data, in a fully stochastic way, and 
compare the results with deterministic 
simulations, by using the cerebellar 
Purkinje cell (PC) as a model system. PC 
has a uniquely complex dendritic tree with 
spines, with an extensive distribution of 
calcium and KCa channels. 

For this, we aimed to develop 
several computational tools for building 
models of active ion channels and a 
powerful computer simulation platform to 
run a stochastic simulation with 
morphological details that can make use of 
currently available supercomputers. 
 
３．研究の方法 
We developed the following computational 
tools: 
1. ChannelTune is a computer software 

for building a computer model of an ion 
channel based on electrophysiological 
recording data. We built this by using 
the parallelized and multi-object 
evolutionary optimization algorithm by 
using a Python package inspyred 
(https://pythonhosted.org/inspyred) as 
the program is written in Python. 

2. Parallel STEPS is an improved version 
of the Stochastic Engine for Pathway 
Simulation (STEPS; Hepburn et al, 
BMC Syst Biol, 2012), which can 
simulate stochastic cellular processes 
in a complex geometrical domain by 
using a parallel computational backend 
such as the MPI in a cluster 
supercomputer. 

3. We developed and used the following 
computational models/simulations: 

a. Deterministic passive model: We ran 



deterministic simulations of neuron 
models with various reconstructed 
morphologies and the passive 
membrane, and analyzed the data to 
characterize quantitatively how the 
voltage-mediated signaling between 
two points, evoked by a synaptic input, 
is affected by neuronal morphology. 

b. Deterministic active model: We ran 
the same version of simulations with 
deterministically active neuron 
models, including the PC models 
(Anwar et al., J Neurosci, 2013; Zang 
et al., https://doi.org/10.1101/284026) 
and CA pyramidal neuron (Kim Y et 
al. 2015. Elife 4: e06414), and 
investigated how the results from the 
passive model can help the active 
model simulation. 

c. Stochastic active model: We ran the 
stochastic simulation of the PC model 
(Anwar et al., J Neurosci, 2013), 
extended to the full dendritic tree, in 
the parallel STEPS simulator. 

 
４．研究成果 
1) Novel algorithm to characterize 
functional subunits in a dendritic tree:  
We made two observations from the 
simulations of deterministic passive 
neuron models with various morphologies. 
First, a branching structure in a dendritic 
tree often puts a sharp limit on 
dendrite-to-dendrite current transfer. 
Second, if the transfer resistance from a 
point a to b is denoted by Rba and a passive 
spatial impact of a current input at a is Ra 

= [R1a, R2a, …], a non-passive contribution 
in the leading order is proportional to the 
overlap between two, Rb･Ra, which can be 
used as a similarity measure to cluster and 
classify the input locations.  
 
 
 
 
 
 
 
 
 
Figure 1. Left, Middle: Depolarization of 
dendrites with a local synaptic input (arrow). 
Note that the inputs with different locations 
evoke similar responses. Right: Functional 
subunits found by classifying the responses.  
 

In this way, we found that the 
dendritic segments form distinctive 
“functional subunits.” We also found 

dendritic morphology affects shapes of the 
functional subunits. In cortical pyramidal 
cells, most subunits were single branches, 
but PCs had many branched bundles as 
subunits. 

How synaptic inputs are 
distributed with respect to functional 
subunits was a predictor of whether the 
inputs will be summed linearly or not. In 
the passive membrane case, the inputs 
within one subunit summed sublinearly, 
even though they were distributed to 
different branches. Simulation of the same 
model with active dendrites showed that 
synaptic inputs within one subunits better 
triggered a dendritic spike, leading to 
supralinear summation, compared to when 
the inputs were distributed to different 
subunits.  
 
 
 

 
 
 
 

Figure 2. A. Summation EPSPs with 
distributed synaptic inputs in a passive CA1 
pyramidal cell when activated synapses are in a 
single dendritic branch (black), different 
branches within a subunit (red), and different 
subunits (cyan), respectively. B. Top: Synapse 
locations (black dots) in each case. The red part 
is a subunit. Bottom: EPSPs at the soma. 

 
 
 
 
 

 
Figure 3. A. Generation of a dendritic spikes 
with distributed synaptic inputs in an active 
CA1 pyramidal neuron model. Blue lines on the 
x-axis represent spike inputs into synapses. 
Synapses are distributed in the same way as 
Fig. 2 in each case. B. Membrane potential at 
dendritic spike generation. t = 20.5 ms, 30.5 ms, 
and 30.5 ms, respectively. 
 
Recent studies suggested that individual 
dendritic branches are functional subunits 
(Branco et al., Curr Opin Neurobiol 2010), 
and single (pyramidal) neurons can act like 
two-layer neural networks (Poirazi et al., 
Neuron, 2003). Our results show that a 
wide variety of neuronal morphology in 
neural systems can define the functional 
subunits differently across distinct types of 
neurons, tailoring the synaptic summation 
property differently. This work is currently 



in preparation for journal publication. 
 
2) Development of ChannelTune: We have 
written a custom optimization computer 
program for fitting parameters of an ion 
channel model to electrophysiology 
recording data, which we named 
ChannelTune. The optimization process 
was based on evolutionary strategy with 
multi-objective optimization, which 
enabled to deal flexibly with multiple 
current recordings with different voltage 
commands.  

We tested the program by 
reconstructing a resurgent sodium channel 
model (Raman and Bean, J Neurosci, 2001) 
from simulated synthetic data, which is 
generated from a typical voltage-clamp 
step protocol where the membrane voltage 
was held at a certain voltage, ranging from 
-90 to 30 mV by an increment of 10 mV. In 
this test, the original values of the model 
parameters were successfully found both 
with a reasonable precision and within 
limited computational timeframe for all 
tested parameter sets (up to four free 
parameters). Multi-objective optimization 
using all 13 types of step stimulation 
produced solutions extremely close to the 
original values within the same number of 
optimization cycles. Increased number of 
free parameters posed additional 
complications for the optimizer and 
required longer computational time for 
achieving good precision. 
 

 
 
 
 
 

 
 
 
 
 
 
 

Figure 4. Red: target current traces produced 
with the original value ζ=0.03. ζ is the 
voltage-dependent rate for exiting from the 
open/blocked state, entered by the second 
mechanism of inactivation. 4 out of 13 traces 
are shown (middle part from top to bottom): -60, 
30, 10, -10 mV. Blue: corresponding traces 
produced using the value of ζ=0.0341, optimized 
for -60 mV objective. The discrepancy for other 
traces is noticeably higher. 
 

This software is publicly released 

under an open-source license (GPL v3.0) 
(https://github.com/CNS-OIST/channeltun
e). 
 
3) Parallel STEPS: STEPS performs an 
exact stochastic simulation of 
reaction-diffusion systems in arbitrarily 
complex 3D geometries. The core 
simulation algorithm is an implementation 
of Gillespie's SSA, extended to deal with 
diffusion of molecules over the elements of 
a 3D tetrahedral mesh (TetOpSplit solver). 
It also supports accurate and efficient 
computation of local membrane potentials 
on tetrahedral meshes, with the addition of 
voltage-gated channels and currents 
(EField solver). Tight integration between 
the reaction-diffusion calculations and the 
tetrahedral mesh potentials allows 
detailed coupling between molecular 
activity and local electrical excitability. 

In the latest 3.2.0 release, we 
added an early support for large scale 
parallel simulation of stochastic 
molecular-electrophysiological events in 
full cell morphologies, thanks to the new 
developments of the TetOpSplit parallel 
reaction-diffusion solver and the PETSc 
EField solver. In the following 3.3 release, 
both the stochastic molecular solution 
(Operator Splitting) and the separate 
electrophysiological solution (Finite 
Volume) of a simulation are distributed 
across all computing cores. However, the 
two solutions exhibit different performance 
and scalability. Generally, the voltage 
solution EField (EF) is faster but scales 
poorly after ~100 cores, whereas the 
Reaction-Diffusion (RD) solution requires 
more computation but scales well to 1000s 
cores. The upcoming 3.4 release provides a 
splitting scheme where computing cores 
can be split into Reaction-Diffusion cores 
and EField cores for better loading balance. 
Early results indicate that the core 
splitting approach can further speedup our 
full Purkinje dendrite simulation on 2000 
cores from more than a day to less than two 
hours by a 1900/100 (RD/EF) splitting 
scheme.  

 
 
 
 
 
 
 
 

Figure 5. Time cost for a 60ms-long Purkinje 
cell dendrite simulation. 



4) Stochastic simulation of the full 
cerebellar Purkinje cell: We simulated a 
Purkinje cell dendritic model (Anwar et al., 
J Neurosci, 2013) with synaptic (climbing 
fiber) activation in parallel STEPS. 
Whereas the 2013 simulations were run in 
serial STEPS on a scale of ~15% of the 
dendrite and in well-mixed compartments, 
with parallel STEPS we were able to 
simulate the entire dendritic tree to 
sub-micron resolution on a mesh of ~1M 
tetrahedrons. Even with the larger spatial 
scale and greater resolution, runtime was 
reduced by many orders of magnitude 
compared to serial STEPS. 
 
 
 
 
 
 
 
 
Figure 6. Left: Purkinje cell morphology (from 
neuromorpho.org, ID: NMO_35058). Right: 
Tetrahedral mesh reconstruction using the BBP 
mesh generation tool. 

 
Similar to the smaller spatial 

scale of 2013, in the full dendrite we 
observed significant spatiotemporal 
variability in the voltage signal across 
trials (different random number seeds) 

 
 
 
 
 
 
 
 
Figure 7. Trial-to-trial spatiotemporal 
variability in stochastic PC simulations. Two 
trials with an identical initial condition are 
shown.  
 

STEPS is able to simulate full 
neuronal morphology with high 
geometrical accuracy and simulate 
chemical interactions, diffusion and 
voltage to sub-micron resolution. If 
appropriate HPC hardware is available, 
such neuronal models of high molecular 
detail can now be simulated in ~hours. Our 
early results indicate that this is a worthy 
avenue of research due to the high 
variability arising from stochastic 
processes in and around important 
signaling regions such as thin dendritic 
branches.  

 
 
 
 
 
 
 
 
Figure 8. Strong trial-to-trial variability in the 
calcium signals in thin branches. Example 
calcium profile across the full dendrite for one 
trial at 17ms after stimulus, with insets 
showing the calcium profiles over 10 different 
trials (different colors) for the branches 
indicated, as well as the maximum range across 
those trials. The thinnest branches (red circles) 
show variability on the order of µM, although 
variability is lower for thicker branches (black 
circle). 
 

Future improvements to our work 
will include utilizing a more detailed model 
and geometry, including spines and the 
somatic compartment. From a performance 
perspective, we will also pursue distributed 
meshing to reduce the memory footprint.  
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