科学研究費助成事業 研究成果報告書

平成 30 年 6 月 19 日現在

機関番号: 24601

研究種目: 基盤研究(C)(一般)

研究期間: 2015~2017

課題番号: 15K09967

研究課題名(和文)膵癌IVR治療における新規デバイスと治療法の開発

研究課題名(英文)Development of new device and treatment in interventional radiology for

pancreatic cancer

研究代表者

田中 利洋 (Tanaka, Toshihiro)

奈良県立医科大学・医学部・准教授

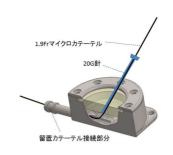
研究者番号:70326338

交付決定額(研究期間全体):(直接経費) 3,700,000円

研究成果の概要(和文):血管解剖および血行動態の複雑である膵癌に対する局所カテーテル治療のデバイスとして、マイクロカテーテルの挿入可能な埋め込み方ポートを開発した。ポートを製作後にポートからのマイクロカテーテル排出試験および血管モデルを用いた選択的カテーテル挿入の評価を行い性能の評価を行った。さらにブタを用いた実験では、留置したデバイスからマイクロカテーテルを挿入し、肝動脈分枝の選択を3週間にわたり毎週繰り返し行った。デバイスを用いた治療の実行可能性が証明された。

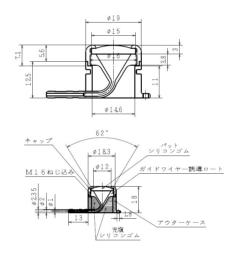
研究成果の概要(英文): In intraarterial therapy for pancreatic cancer, which has complicated arterial anatomy and hemodynamic, a new device of repeatable microcatheter accessible port was developed. The developed device was tested in in vitro experiments using a vascular model. Then, in vivo study using a pig was conducted. A mcirocatheter was successfully inserted into the hepatic arterial branches through the device. The feasibility of this treatment was shown.

研究分野: interventional radiology

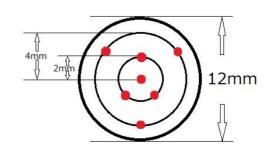

キーワード: pancreatic cancer intraarterial therapy

1.研究開始当初の背景

膵癌は未だに予後不良な疾患で、国内での 死亡数は漸増しており、現在年間3万人を越 し、癌死の第5位とされていた。当時は現在 よりもさらに、全身化学療法の奏効率は高く なく、有効な治療法はほとんどなかった。 Interventional Radiology (IVR)は,腫瘍へ の選択的な薬剤注入および栄養血管塞栓を可 能とし、全身副作用を最小限としつつ腫瘍局 所での集中的な治療を実現できる治療法とし て期待され、体内にカテーテル留置を行い、 抗がん剤を繰り返し動注する方法で良好な治 療成績が報告されていた。しかし、膵癌の栄 養動脈は複雑な血管解剖と血流動態であり、 カテーテル留置に限界がある点や留置カテー テルからは抗がん剤動注を行うことは可能で あるが、血管寒栓を行うことは合併症のリス クの点で困難であることが問題とされていた。 当時、体内留置型カテーテルを用いて繰り返 し選択的な血管塞栓術を行う方法として system-iが報告され (Itano 0, et al. Jpn J Radiol 2014)、膵癌治療への応用が期待され ていたが、system-i専用デバイスは開発され ておらず、市販の止血キャップを留置カテー テルに接続して皮下に埋没するため、穿刺の 技術的難易度が非常に高く、普及に至ってい なかった。


2.研究の目的

進行膵癌に対する IVR の技術を用いた新規 経カテーテル的治療として、マイクロカテー テルが挿入可能な新規埋め込み型カテーテ ル・ポートシステムを開発し、血管モデルを 用いて性能を確認の上、動物実験でデバイス 長期留置の安全性と選択的カテーテル治療 の実行可能性を確認することを目的に本研 究を行った。



3. 研究の方法

(1) 新規埋め込み型カテーテル・ポートシステムを設計・作成した。ポート内部はロート型形状のカテーテル誘導部を設けたタンクを作成し、シリコンゴムで蓋をした。

(2) ポートからのカテーテル排出の評価。 ポートのシリコンセプタム部分の中心、2mm 外側の同心円上を20 ゲージ針で穿刺し、穿刺針の外筒の内腔を通した0.014 インチのマイクロガイドワイヤー・1.9 フレンチのカテーテルがスムーズにポートから排出されるかを評価した。

(3) 血管モデルを用いたマイクロカテーテル選択性の評価。

5フレンチの側孔付留置カテーテルを先端 胃十二指腸動脈に挿入し、側孔を総肝動脈に 位置させた。カテーテル中枢側はポートに接 続。0.014インチのマイクロガイドワイヤ ー・1.9フレンチのカテーテルをカテーテル 側孔から血管内に排出し、左肝動脈および右 肝動脈を選択した。

(3) ブタを用いたデバイスの評価。

本課題は大阪府立大学獣医学科の協力の下、 大阪府立大学獣医臨床センターで施行した。 大腿動脈からカテーテルを挿入し、腹腔動脈 を選択。ガイドワイヤーカテーテル交換法を 用いて側孔付留置カテーテルに交換。先端を 胃十二指腸動脈または脾動脈に挿入し側孔 を総肝動脈に位置させた。カテーテル中枢側 はポートに接続し、皮下に埋没。

カテーテル留置 1 週間後ポートを 20 ゲージ 穿刺針で穿刺し、逆血を確認後に 0.014 イン チのマイクロガイドワイヤー・1.9 フレンチ のカテーテルを外筒内腔からポート内に挿入。

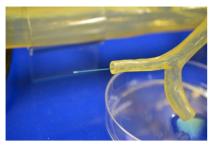
X線透視下に留置カテーテルの側孔からマイクロカテーテル・ガイドワイヤーを排出させ、 肝動脈区域枝を選択。

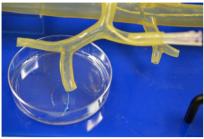
血管造影施行後、油性造影剤を注入しCTを 撮像。さらに翌週にも同様にデバイスからマ イクロカテーテル・ガイドワイヤーを挿入し 別の肝動脈区域枝を挿入。3週間連続選択的 塞栓術を想定した治療を行った。

4. 研究成果

(1) デバイスの作成

デバイスは上図のものを作成。ロート部を含む本体はステンレスを加工した。


(2)排出試験



上図はセプタム中心から 2mm 外側の同心円状の穿刺であるが、4mm 外側を含めて全ての穿刺点からマイクロカテーテル・ガイドワイヤーがスムーズに排出させた。

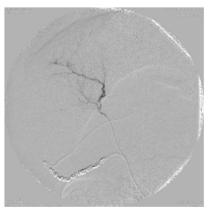
(3)

血管モデルを用いた評価。

セプタム中心、2mm 外側、4mm 外側からそれ ぞれ挿入した(各 N=3)マイクロカテーテル・ ガイドワイヤーは左右肝動脈を全て選択可 能であった。

(4)

ブタを用いた評価


ブタ大腿動脈からのカテーテル留置は、股関節の屈伸によりカテーテルを来すことが明らかになり、当初の予定と変更して腸骨動脈をカットダウンしカテーテル挿入することになった。留置カテーテルは先端固定した。翌週および翌々週にデバイスからマイクロカテーテル・ガイドワイヤーを挿入し、選択的に肝動脈分枝にカテーテル誘導することに成功しCTで確認した。

埋没部にも特にトラブルなく、生体内での安全性の確認と繰り返しマイクロカテーテル を目的血管に挿入する治療法の実行可能性 が証明された。

5. 主な発表論文等なし

6.研究組織

(1)研究代表者

田中利洋 (TANAKA, Toshihiro) 奈良県立医科大学・医学部・准教授 研究者番号:70326338

(2)研究分担者

庄 雅之 (SHO, Masayuki) 奈良県立医科大学・医学部・教授

研究者番号:50364063