科学研究費助成事業

平成 29 年 6月

研究成果報告書

8 日現在 機関番号: 12601 研究種目: 挑戦的萌芽研究 研究期間: 2015~2016 課題番号: 15K13375 研究課題名(和文)アト秒光電子分光のための超高強度テラヘルツパルス発生 研究課題名(英文)Ultra high intensity terahertz pulse generation for attosecond photoelectron spect roscopy 研究代表者 板谷 治郎(ITATANI, Jiro) 東京大学・物性研究所・准教授 研究者番号:50321724 交付決定額(研究期間全体):(直接経費) 3,000,000円

研究成果の概要(和文):赤外域の広帯域光パラメトリック増幅器において、三次分散を利用した二波長増幅手法を提案・実証し、波長の異なる二つのパルスを発生させた。この出力をLGS結晶に集光することによって、波長5~10ミクロン帯をカバーする位相安定な中赤外光パルス発生を実現した。得られたパルスを集光することによって、最大電場強度56 MV/cmを達成した。また、中赤外パルスの時間波形と同期した6.5フェムト秒の超短パルスを用いることにより、中赤外パルスの電場波形を直接、電気光学的に測定することにも成功した。これらの成果は、アト秒領域の超高速光科学の研究対象を、気相の原子分子から固体へと広げる上で重要な成果であ る。

研究成果の概要(英文):We have developed a novel optical parametric amplification (OPA) scheme, the dual-wavelength OPA, to produce intense mid-IR pulses. The scheme is based on the OPA to amplify heavily chirped pulse with the third-order dispersion, resulting in the phased two-color pulses. the These pulses are focused into an LGS crystal to produce carrier-envelope phase-stable mid-IR pulses that cover 5-10 micrometers in the spectrum. The waveform of the electric field was directly measured by the electro-optic sampling method using 6.5-fs ultrashort visible pulses. The focused intensity of the mid-IR pulses reaches 56 MV/cm. These results are an important step to expand the objects of attosecond optical science from gas-phase atoms and molecules, to crystalline solids and condensed matters.

研究分野: アト秒光科学, レーザー物理

キーワード:応用光学・量子光光学 量子エレクトロニクス 高性能レーザー 光物性 テラヘルツ / 赤外材料・素 子、天然ガス

1. 研究開始当初の背景

2001年の最初のアト秒パルスの報告以来、ア ト秒光科学では、数サイクルの位相安定な高 強度レーザーと極紫外アト秒パルスの利用 によって、気相の原子分子を対象とした研究 が飛躍的に進展した。その後、2013年に集光 電場1 MV/cmを越える高強度テラヘルツパル ス発生が実現し、様々な固体中での強電場現 象の発見がなされた。波長の長い光源でより 高い光電場を達成することにより、新現象の 発見と、特に固体を対象とした強光子場科学 の展開が期待されていた。

2. 研究の目的

本研究の目的は、長波長領域で 10 MV/cm を 越える高強度の光電場を達成し、新現象およ び新しい光技術のシードの探索を実験的に 行うことである。特に、キャリアエンベロー プ位相安定な高強度光電場中での電子過程 は、光電場でアト秒精度で駆動されているこ とから、アト秒科学への応用が期待される。

3. 研究の方法

当初の研究提案では、30 Hz 程度の低繰り返 し高エネルギーレーザーを開発し、従来型の 手法で高強度テラヘルツパルスを発生する 目論見であった。しかしその後、高強度中赤 外光源を用いて固体からの高次高調波発生 が報告された。そこで本研究では、当初目指 していたテラヘルツ領域での高強度光パル ス発生ではなく、中赤外領域での高強度光パル ス発生を行う事とした。高強度中赤外パル スの応用としては、固体における高次高調波 発生を行い、偏光解析等によりその発生過程 に関する知見を得ることとした。

4. 研究成果

これまでに、キャリアエンベロープ位相安定 な中赤外光の発生では、波長の異なる二波長 のパルスを独立した光パラメトリック増幅 器で増幅し、非線形光学結晶中で差周波発生 を行う手法が一般的だった。しかしこの手法 では、波長の異なる二つのパルスの光路長の わずかなゆらぎで相対位相が変化し、それに よって中赤外光のキャリアエンベロープ位 相が一定にならなくなるという問題点があ った。この問題を解決するために、「二波長 光パラメトリック増幅法」を考案し、実証し た。図1に二波長光パラメトリック増幅法の 概念図を示す。

図1:二波長光パラメトリック増 幅法の概念図。

多くの光学材料は波長1~2 µm 帯において 群速度分散がゼロとなる波長をもつ。

群速度 分散がゼロとなる波長をカバーする超短パ ルスを伝播させることによって、三次分散に よって二つの瞬間周波数が共存するチャー プパルスを発生させることが出来る。これを 光パラメトリック増幅におけるシード光と して用い、超短パルスをポンプ光として用い ることにより、二つの波長を同時に選択的に 増幅することが可能となる。この二波長パル スを非線形光学結晶に集光し差周波発生を 行えば、中赤外パルスが得られる。本手法の 重要な特徴は、二つのスペクトル成分が同時 に増幅されて、空間的に分離する必要がない ことである。この結果、差周波発生における .つの入射パルスの相対位相が光路長の揺 らぎ等によって変化することがなく、中赤外 パルスのキャリアエンベロープ位相が受動 的に安定化される。

図2に開発した実験装置の配置を示す。ま ず、高強度チタンサファイアレーザー (パル スエネルギー7 mJ, パルス幅 40 fs, 繰り返 し1kHz)の出力の一部をYAG結晶に集光し、 赤外域 (波長 1~1.5 μm) をカバーする白色 光を発生させた。この出力を石英ブロック (光路長 300 mm) に二回通すことにより、三 次分散によって大きくチャープしたシード パルスを発生させた。石英のゼロ分散波長は 1230 nm にあるため、この出力を光パラメト リック増幅することにより、波長 1230 nmの 短波長側と長波長側の二成分を選択的に増 幅することができる。また、二波長の波長間 隔は OPA のポンプ光とシード光の遅延時間を 調整することによって制御できる。BIBO 結晶 を用いた二段の広帯域 OPA によって、パルス エネルギー0.5mJまで増幅し、偏光と郡遅延 を制御してから、LGS 結晶に集光して差周波 発生を行った。

図2:中赤外パルスの発生と計測 の配置図。

図2の最上部に示すように、中赤外光発生 と同時にチタンサファイアレーザーの出力 の一部をガスセルに導入し、フィラメンテー ションに伴うスペクトルの広帯域化を行い、 中心波長600 nm 付近においてパルス幅6.5 fs の極短パルスを発生させた。この極短パルス と中赤外パルスを同時にLGS 結晶へ集光する ことによって、中赤外パルスの電場波形の電 気光学サンプリングを行った。図3に示され るように、波長5~10ミクロンをカバーす る中赤外パルス発生が確認出来た。また、電 場波形を直接観測することによって、キャリ アエンベロープ位相が受動的に安定化され ていることも実験的に示すことが出来た。

図3:(a)電気光学サンプリングに よって直接観測された中赤外パル スの電場波形。(b)電場波形をフ ーリエ変換することによって得ら れたスペクトル(赤線部)。

また、キャリアエンベロープ位相の長期安 定性に関しては、電気光学サンプリングによ る電場波形計測を長時間にわたって行うこ とによって評価を行った。図4にその結果を 示す。全体的に中赤外パルスの電場波形は1 /2周期程度変化していることがわかるが、 電場波形そのものは形状を保っていること がわかる。これは、電気光学サンプリングで 用いる極短パルスのタイミングが温度変化 等によって変化しているためと考えられる。

図4:(a)電気光学サンプリングに よる6時間計測結果。(b)測定開始 時と6時間後の中赤外電場波形の 比較。

得られたパルスを集光することによって、 最大電場強度 56 MV/cm が達成された。当初 の目的は 10 MV/cm だったため、それを十分 上回る結果を得ることが出来た。

高強度光電場による非線形光学現象の探索として、得られた中赤外パルスを半導体結

晶 (GaSe) へ集光する実験も行った。その結 果、可視域をカバーし、なおかつバンドギャ ップを越える高次高調波発生を確認した。偏 光解析とモデル計算との比較を現在進めて おり、発生機構に関して有益な知見が得られ つつある。とくに、固体中におけるアト秒過 程として、バンド曲面中を光電場で加速され る過程において入射光に対して垂直な偏光 成分が発生していることが強く示唆される 結果を得ている。この結果は、固体における 高次高調波からバンド構造を全光学的に決 定する道につながるものである。また、本実 験は、固体中の電子の運動をアト秒精度で制 御していることに相当し、気相の原子分子を 対象としてきたアト秒光科学を、固体中の電 子ダイナミクスへと拡大させるための重要 なマイルストーンである。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計4件)

[1] K. Kaneshima, K. Takeuchi, <u>N. Ishii</u>, and <u>J. Itatani</u>, "Generation of spectrally stable 6.5-fs visible pulses via filamentatioin in krypton", High Power Laser Science and Engineering 4, e17-1-5 (2016), 査読有, DOI:10.1017/hpl.2016.17.

[2] K. Kaneshima, <u>N. Ishii</u>, K. Takeuchi, and <u>J. Itatani</u>, "Generation of carrier-envelope phase-stable mid-infrared pulses via dual-wavelength optical parametric amplification", Opt. Express 24 (8), 8660-1-6 (2016), 査読有, DOI:10.1364/0E.24.008660.

[3] N. Ishii, K. Kaneshima, <u>T. Kanai</u>, S. Watanabe, and <u>J. Itatani</u>, "Generation of ultrashort intense optical pulses at 1.6 μ m from a bismuth triborate-based optical parametric chirped pulse amplifier with carrier-envelope phase stabilization", J. Optics 17, 094001-1-8 (2015), 査読有, DOI: 10.1088/2040-8978/17/9/094001.

[4] K. Kaneshima, M. Sugiura, K. Tamura, <u>N. Ishii</u>, and <u>J. Itatani</u>, "Ultrabroadband IR chirped mirrors characterized by white-light Michaelson interferometer", Appl. Phys. B 119, 347-353 (2015), 査読 有, DOI: 10.1007/s00340-015-6076-2.

〔学会発表〕(計13件)

[1] <u>石井順久</u>,金島圭佑,篠原康,石川顕 一,<u>板谷治郎</u>,「セレン化ガリウムからの高 次高調波の偏光回転」,第 64 回応用物理学 会春季学術講演会,2017 年 3 月 14-17 日,パ シフィコ横浜(神奈川県横浜市).

[2] 水野智也, 金島圭佑, 竹内健悟, <u>石井</u> <u>順久</u>, <u>金井輝人</u>, <u>板谷治郎</u>, 「中赤外パルス におけるナノチップによる電場増強効果と 光電界電子放出」, 第 64 回応用物理学会春 季学術講演会, Mar 2017 年 3 月 14-17 日, パ シフィコ横浜(神奈川県横浜市).

[3] 金島圭佑,竹内健悟,<u>石井順久</u>,<u>板谷</u> <u>治郎</u>,「CEP 安定な高強度中赤外パルス光に よるサブサイクル分光」,日本物理学会 2016 年秋季大会,2016 年 9 月 13-16 日,金沢大学 角間キャンパス(金沢県金沢市).

[4] 向井佑, 石井順久, 金島圭佑, 内田裕 久, 板谷治郎, 田中耕一郎, 「近赤外 OPCPA 超短パルス光源を用いた広帯域テラヘルツ 波発生」, 応用物理学会秋季学術講演会, 2016年9月13-16日, 朱鷺メッセ(新潟県新 潟市).

[5] J. Itatani, "Intense few-cycle IR sources for attosecond science: new opportunities at higher energies and in solids", International Symposium on Attosecond Science, 2016 年 7 月 30 日, 東京大学小柴ホール(東京都文京区).

[6] K. Kaneshima, <u>N. Ishii</u>, K. Takeuchi, and <u>J. Itatani</u>, "Generation of CEP-stable mid-infrared fields exceeding 20 MV/cm", International Conference on Ultrafast Phenomena 2016 (UP2016), 2016 年 7 月 17-22 日, Santa Fe (USA).

[7] K. Kaneshima, <u>N. Ishii</u>, K. Takeuchi, and <u>J. Itatani</u>, "Waveform characterization of CEP-stable intense mid-infrared pulses generated via dual-wavelength OPA", CLEO:2016, 2016年 6月5-10日, San Jose (USA).

[8] 金島圭祐, <u>石井順久</u>, <u>板谷治郎</u>, 「高強 度中赤外パルス光によるサブサイクル分光」, 第3回超高速光エレクトロニクス研究会 兼 理研シンポジウム「超短パルス長波長光 源の進展とその応用」, 2016年4月26日, 理 化学研究所(埼玉県和光市).

[9] 板谷治郎,「BIBO 結晶を用いた超広帯域 赤外 OPCPA 光源の開発とアト秒・サブサイク ル分光への展開」,応用物理学会春期学術講 演会,2016年3月19-22日,東工大大岡山キ ャンパス(東京都目黒区).

[10] 金島圭佑,<u>石井順久</u>,竹内健悟,<u>板谷</u> <u>治郎</u>,「広帯域光パラメトリック増幅器によ る二波長同時増幅を利用した位相安定な高 強度中赤外光パルスの発生と、その電場波形 の測定」、応用物理学会春期学術講演会、 2016年3月19-22日、東工大大岡山キャンパ ス(東京都目黒区).

[11] <u>板谷治郎</u>, 「位相制御された高強度赤 外 OPCPA 光源によるアト秒軟 X 線パルス発 生」,応用物理学会・量子エレクトロニクス 研究会「極限計測の科学と技術」,2015 年 12月18-20日,東京大学山中寮内藤セミナー ハウス(山梨県南都留郡).

[12] 金島圭佑,<u>石井順久,板谷治郎</u>,「広 帯域光パラメトリック増幅器による二波長 同時増幅を利用した波長可変中赤外光パル ス発生」,応用物理学会秋季学術講演会, 2015年9月13-16日,名古屋国際会議場(愛 知県名古屋市).

[13] K. Kaneshima, <u>N. Ishii</u>, and <u>J. Itatani</u>, "Tunable mid-IR pulse generation via frequency selective optical parametric amplification", 10th International Ultrafastoptics Conference (UFO X), 2015 年 8 月 16-21 日, Huairou (China).

〔その他〕 研究室ホームページ http://itatani.issp.u-tokyo.ac.jp/

応用物理学会奨励賞受賞報告のホームペー ジ http://itatani.issp.u-tokyo.ac.jp/index .php?id=55

 研究組織
 研究代表者 板谷 治郎(ITATANI, Jiro) 東京大学・物性研究所・准教授 研究者番号: 50321724

(2)研究分担者 なし

(3)連携研究者
 石井 順久(ISHII, Nobuhisa)
 東京大学・物性研究所・助教
 研究者番号: 40586898

金井 輝人(KANAI, Teruto) 東京大学・物性研究所・技術専門職員 研究者番号:10575161

北野 健太 (KITAN0, Kenta) 青山学院大学・理工学部・助教 研究者番号:90586900 (4)研究協力者

金島 圭佑 (KANESHIMA, Keisuke) 東京大学・理学系研究科・博士課程

竹内 健悟 (TAKEUCHI, Kengo) 東京大学・理学系研究科・修士課程