科学研究費助成事業

研究成果報告書

科研費

平成 2 9 年 6 月 6 日現在

機関番号: 14401
研究種目:挑戦的萌芽研究
研究期間: 2015 ~ 2016
課題番号: 15K13975
研究課題名(和文)フォトニック結晶によるテラヘルツ・タグの創製
 研究課題名(英文)A Terahertz Tag Using Photonic Crystal Slabs
水麦、芯天(Nagatsuma, Tadao)
大阪大学・基礎工学研究科・教授
研究者番号:0 0 4 5 2 4 1 7
父竹汱疋額(研宄期间主体):(直接経貨) 2,900,000 円

研究成果の概要(和文):近年、バーコードのように情報が書き込まれたタグを準備し、それを電波で読み出す だけの機能を持ったものとして、テラヘルツ波をタグ・リーダのための電磁波として用いる「THzタグ」が報告 されている。THzタグは、保護・梱包材の外から読み取る、内蔵型タグとしての利用が可能である。しかし、こ れらの情報量は27 bit(単位平方cm)程度であり、実用のためには記憶できる情報量を増やす必要があった。本 研究では、2次元フォトニック結晶スラブを利用して、周波数と空間の2次元情報を書き込む情報タグを提案 し、600GHz帯において、48 bit(単位平方cm)のタグの試作と動作実証に成功した。

研究成果の概要(英文):We propose a novel terahertz (THz) tag as future tags for Internet of Everything (IoE), which can be secure, compact and packaged inside objects. In contrast to previous THz tags, which have a maximum capacity of 27 bits per square centimeters, we introduce two dimensional (2D) photonic-crystal slabs in order to increase the capacity by encoding an information in both space and frequency domains. We have designed, fabricated and successfully demonstrated THz tags with a capacity of 48 bits per square centimeters in the 600-GHz band.

研究分野:工学

キーワード: テラヘルツ タグ イメージング

1.研究開始当初の背景

図 1 に本研究で取り扱う、テラヘルツ波 (100GHz~10THz)を利用したタグ(THzタグ) の位置づけを示す。THzタグとは、可視光領 域で用いられているバーコードやQRコード と同様に、物体の管理情報を書き込むもので、 THz 波を使って読み出しを行うものである。 光学タグと違い、タグを物体内に内蔵しても、 THz 波の透過性を利用して読み取ることが できる。

研究開始当初において、テラヘルツ波を利 用したタグ(THz タグ)の情報量(容量)は、最 大で 27bit/cm² 程度であり、あらゆる物がイ ンターネットに繋がる、IoT や IoE 時代に向 けて、従来の THz タグの情報量を大幅に上 回るタグに対するニーズが高まっていた。一 般的には最低 128bit が必要とされていた。

図 1. THz タグの位置づけ.

図 2. 従来の THz タグの構造. [1] E. Perret et al., Radio engineering, 20(2), 380-386 (2011). [2] K. Willis et al., ACM Trans Graph, 32(4), 138 (2013).

2.研究の目的

本研究では、フォトニック結晶を利用した 新奇なタグを提案し、情報量という観点から、 従来の THz タグを大幅に凌駕する可能性を 実験的に示すことを目的とする。

3.研究の方法

図3に本研究で提案するTHz タグの構造 を示す。図4に示すように、フォトニック結 晶が構造に特有の反射・吸収・透過特性を有 することを利用して、周波数軸上に情報を書 き込むと共に、それをユニットとして、空間 上に2次元配置することで、さらなる情報量 を確保する。またこれを多層にすることで情 報量を増加させることが可能である。

本研究においては、特に、どのようなフォ トニック結晶(格子)構造が最も急峻な吸収特 性を示すか(周波数軸上の情報量を増加)と、 単位セルとなるフォトニック結晶をどこま で小さくできるか(格子の周期数を減らし、2 次元空間上の情報量を増加)に関して詳細な 検討を行った。

尚、本研究においては、所有の THz 信号 源の中で、最も広い周波数帯域(>200GHz)を 有し、かつ試作したタグを実験的に評価する 上で十分な出力 (>10µW)を確保できる 600GHz 帯を選んだ。また、高抵抗(>10k cm)Si を基板とする MEMS 技術によりフォ トニック結晶を試作した。

図 3. 提案する THz タグ. (a) 単位ユニットセル. (b) 2 次元化と多層化による大容量化.

図 4. フォトニック結晶に THz 波を照射した 時の反射波の振舞.

4.研究成果

まず、電磁界シミュレータを用いて、THz タグの設計を行った。設計の高精度化を目的 として、予め単純な構造のフォトニック結晶 を試作し、実験的に得られた周波数特性と設 計値とを比較することにより、シミュレシ ョンにおけるいくつかの条件(境界条件等) の最適化を行った。

フォトニック結晶の格子構造としては、偏 波依存を無視できる4回対称構造を採用した。 正方格子を含む6種類の構造を検討し、その 中で、最も鋭い吸収特性が得られる構造を探 索した。また、タグ後方(裏側)の環境がタ グの周波数特性に影響を及ぼさないように、 タグの後方にミラーを配置する構造を用い ることとした。

図 5(a)は、タグの単位セルのサイズが最小(<2.5mm)で、かつ最も鋭い吸収特性が得られる構造の一例である。単位格子の周期数は、縦横 10 周期とした。同図(b)に示すように、600GHz ~ 720GHz において、空孔の間隔を変えることにより、8 つの異なる周波数(f₁~f₈)で吸収が起こるようにした。これにより、log₂8=3bitのタグが実現できる。

図 5. 単位ユニットセルの構造と吸収特性 (設計値). サイズが、<2.5mm となっている のは、空孔の間隔によって周波数特性が変化 するため、10 周期分のサイズが異なることに よる.

図 6. タグを読み取るためのシステム構成. 奥行き情報(多層のタグ)は、干渉信号の周波 数特性を、フーリエ変換することで得られる.

最後に、図6に示す測定系を用いて、試作 したタグ読み取りの検証実験を行った。図 7(a)に示すように8種類($f_1 ~ f_8$)のユニット を 3x3 に配置し、それぞれのユニットについ て、吸収特性を測定した結果が図7(b)である。 同図に示すように、設計通りの吸収特性が得 られた。すなわち、7.5mm角のタグによって、 27bitの情報量を記録できることが示された。 単位 cm²に換算すると、48bit/cm²の記録密度 となる。

図7.3×3配列のタグの周波数特性(測定値). f_{1~f8}(f₅は2か所)が明瞭に読み取れているこ とが分かる.

今後、図5から明らかなように、各吸収ス ペクトル間には十分なスペースがあること から、吸収周波数の数を2倍の16個(4bit) に増やすことは容易である。また使用帯域を 600GHz~720GHzから500GHz~740GHzに拡張 することにより、32個(5bit)まで増やすこと が可能である。これは、記録密度に換算する と、64~80bit/cm²に相当する。さらに、図3 に示すように、2層あるはそれ以上の多層化 により、IoEにおいて必要とされている 128bitの容量を実現できる見通しが得られ た。

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計6件)

K. Tsuruda, K. Okamoto, S. Diebold, S. Hisatake, M. Fujita, and <u>T. Nagatsuma</u>, Terahertz Sensing Based on Photonic Crystal Cavity and Resonant Tunneling Diode, PIERS Proceedings, pp. 3922-3926, 2016, 査読有

10.1109/PIERS.2016.7735476

M. Yata, M. Fujita, and <u>T. Nagatsuma</u>, Photonic-crystal Diplexers for Terahertz-wave Applications, Opt. Express, vol. 24, pp. 7835-7849, 2016, 査読有

10.1364/0E.24.007835

<u>T. Nagatsuma</u>, S. Hisatake, and H. H. N. Pham, Photonics for Millimeter-Wave and Terahertz Sensing and Measurement, IEICE Trans. Electron.,vol. E99-C, pp. 173-180, 2016, 査読有

10.1587/transele.E99.C.173

<u>T. Nagatsuma</u>, S. Hisatake, M. Fujita, H. H. N. Pham, K. Tsuruda, S. Kuwano, and J. Terada, IEEE J. Quantum Electronics, vol. 52, 600912, 2016, 査読有 10.1109/JQE.2015.250699 K. Tsuruda, M. Fujita, and <u>T. Nagatsuma</u>, Extremely Low-loss Terahertz Waveguide Based on Silicon Photonic-crystal Slab, Opt. Express, vol. 23, pp. 31977-31990, 2015, 査読有

10.1364/0E.23.031977

<u>T. Nagatsuma</u>, M. Fujita, and S. Hisatake, Empowering Terahertz System Applications by Photonics, IEEE Photonics Newsletters, vol. 29, pp. 12-18, 2015, 査読有 http://www.photonicssociety.org/images /files/publications/Newsletter/April-2 015Web.pdf

[学会発表](計14件)

久次米 祐助, 植田 峻司, 冨士田 誠之, <u>永妻 忠夫</u>, フォトニック結晶スラブを用 いたテラヘルツタグの大容量化, 電子情報 通信学会総合大会 C-14-3, 2017 年 3 月 25 日, 名古屋

<u>T. Nagatsuma</u>, Millimeter-wave and Terahertz Applications Enabled by Photonics, IEEE Radio & Wireless Week (RWW2017), RWW Distinguished Lecturers Session (招待講演), 2017 年 1 月 15 日, Phoenix, USA

<u>永妻忠夫</u>, テラヘルツ技術の動向とその 集積化に向けた展望,電気学会・高周波集 積回路の新分野展開と対応技術調査専門委 員会(招待講演),2016年11月18日,東京 鶴田 一魁,岡本 和馬,S. Diebold,久武 信太郎,冨士田 誠之,<u>永妻忠夫</u>,共鳴ト ンネルダイオードとフォトニック結晶共振 器を用いた小型テラヘルツ分光システム, 電子情報通信学会マイクロ波・ミリ波フォ トニクス研究会,MWP2016-43,pp.1-5,2016 年11月14日,東京

犬伏 祐樹, 豆塚 祥大, 黒川 翼, 冨士田 誠之, <u>永妻忠夫</u>, フォトニック結晶による テラヘルツ帯電力分配器の設計と特性評価, 電子情報通信学会ソサイエティ大会, C-14-15, 2016年9月21日, 札幌

Nagatsuma, Millimeter-wave and Τ. Technologies Enabled Terahertz bv Photonics, Asia-Pacific Radio Science Conference (AP-RASC 2016) (基調講演), 2016 年 8 月 22 日, Seoul, South Korea K. Tsuruda, K. Okamoto, S. Diebold, S. Hisatake, M. Fujita, and T. Nagatsuma, Terahertz Sensing Based on Photonic Crystal Cavity and Resonant Tunneling Diode . Progress In Electromagnetics Research Symposium (PIERS 2016) (招待講 演), 2016年8月11日, Shanghai, China <u>永妻忠夫</u>,フォトニクス技術がもたらす ミリ波・テラヘルツ波の応用と展開、電子 情報通信学会マイクロ波研究会(特別招待 講演), 2016年6月23日, 岐阜 T. Nagatsuma, Telecom-based Photonics

Technologies for Terahertz Applications: From Discrete Devices to Integration, IEEE International Microwave Symposium, Workshop WFH (招待 講演), 2016 年 5 月 27 日, San Francisco, USA

M. Fujita and <u>T. Nagatsuma</u>, Photonic Crystal Technology for Terahertz System Integration, SPIE Commercial+ Scientific Sensing and Imaging (招待講 演), 2016年4月17日, Baltimore, USA 植田峻司,富士田誠之,<u>永妻忠夫</u>,フォト ニック結晶スラブを用いたテラヘルツタグ, 電子情報通信学会 2016 年総合大会,2016 年3月18日,九州大学・福岡

<u>T. Nagatsuma</u>, Millimeter-wave and Terahertz Applications Enabled by Photonics, Seminar of IEEE MTT-S Distinguished Microwave Lecturer (招待 講演), 2016 年 3 月 14 日, Stockholm, Sweden

岡本 和馬, 久武 信太郎, 冨士田 誠之, <u>永妻忠夫</u>,高 Q 値フォトニック結晶共振器 によるテラヘルツ波センシングの高感度化 に関する検討,第76回応用物理学会秋季 学術講演会, 2015 年 9 月 15 日, 名古屋 T. Nagatsuma, Exploring Millimeter and Terahertz Waves by Photonics for Communications and Measurement. International Conference on Transparent Optical Networks (ICTON 2015)(招待講演), 2015 年 7 月 5 日, Budapest, Hungary

〔図書〕(計1件)

Ho-Jin Song, and <u>Tadao Nagatsuma</u>(編著), Handbook of Terahertz Technologies -Devices and Applications, Pan Stanford Publishing, May 31, 2015 (612 ページ).

〔その他〕 ホームページ:http://ipg-osaka.com/

- 6.研究組織
- (1)研究代表者
 永妻忠夫(NAGATSUMA TADAO)
 大阪大学・大学院基礎工学研究科・教授
 研究者番号:00452417

(2)連携研究者

富士田誠之(FUJITA MASAYUKI) 大阪大学・大学院基礎工学研究科・准教授 研究者番号:40432364