科学研究費助成事業

平成 2 9 年 6 月 1 7 日現在

研究成果報告書

機関番号: 12601 研究種目: 挑戦的萌芽研究 研究期間: 2015~2016 課題番号: 15K14765 研究課題名(和文)セルロースナノファイバー1本の強度解析

研究課題名(英文)Strength analysis of single cellulose nanofibers

研究代表者

齋藤 継之(Saito, Tsuguyuki)

東京大学・大学院農学生命科学研究科(農学部)・准教授

研究者番号:90533993

交付決定額(研究期間全体):(直接経費) 2,900,000円

研究成果の概要(和文):セルロースナノファイバー1本の引張強度を解析した結果、平均して約3 GPaであった。これは汎用グレードのもので、低欠陥な高結晶性ナノファイバーであれば、平均6 GPa、最大10 GPaにも至る高強度素材であることが判明した。これらの強度値は、無欠陥なカーボンナノチューブにはとても及ばないが、大量合成された汎用品であれば匹敵するレベルである。

研究成果の概要(英文): The tensile strength of single cellulose nanofibers was was estimated based on a model for the sonication-induced fragmentation of filamentous nanostructures. The mean strength of wood-derived cellulose nanofibers was about 3 GPa. The highly crystalline, thick tunicate cellulose nanofibers exhibited higher mean strength of 6 GPa and the maximum strength of 10 GPa. The strength values estimated here are comparable with those of commercially available multi-walled carbon nanotubes.

研究分野:木質科学

キーワード: セルロース 強度 キチン ナノファイバー

1.研究開始当初の背景

セルロースミクロフィブリル(CMF)は、 高弾性率・低熱膨張率・大比表面積等の特長 を有しており、近年高性能ナノファイバー素 材として世界的な注目を集めている。特に弾 性率が100GPa以上とセラミック並み に高いことは特筆すべきでことであり、19 60年代から様々な手法で弾性率の測定が 行われてきた。では、強度はどうか?実は、 CMFの強度は明らかにされていなかった。 その理由として、近年までCMF単繊維を分 離する技術がなかったことが挙げられる。樹 木中のCMFは、リグニンやヘミセルロース と複合化した強固な耐水性構造(細胞壁)を 形成しており、乾燥や漂白を経て更に結束を 強めてしまう。

本研究者らは、CMFを孤立分散させる手 法を初めて報告している。そして、2013年に はCMF単繊維の強度測定に成功した。具体 的には、 杉木粉からCMFを精製し、 T EMPO酸化法により水中で孤立分散させ、

超音波フラグメンテーション法により単 繊維強度を測定した。TEMPO酸化法とは、 CMFの表面改質法の1種であり、適切な条 件下であれば、CMFの結晶性や構成セルロ ース分子の重合度を維持したまま、CMF間 の結束を著しく緩めることができる(表面C 6位選択的カルボキシル化)。

2.研究の目的

自然界のCMFは多様であり、材料利用される際にも様々なプロセスを経て構造が変化する。材料の強度は構造に依存するため、 CMFの強度は多様であることが予想される。そこで本研究は、多様なCMFの強度を 測定し、強度範囲・生物種依存性・プロセス 依存性を明らかにすると共に、強度値と構造 因子の相関解析を行うことを目的とした。

3.研究の方法

本研究では、まずCMFの結晶性と強度の 関係について検討を進めた。低結晶性の試料 として杉木粉、高結晶性の試料としてマボヤ の被嚢を選択した。前述の通り、杉木粉は既 に解析済みであるが、低結晶性CMFとして 理想的であるため、本検討でも対照試料とし て使用した。それぞれの出発試料より精製し たCMFを既報に従ってTEMPO酸化し た。0.01%濃度の懸濁液20mLを調製 し、超音波ホモジナイザーで処理した。処理 時間を5~200分とし、適宜サンプリング した。サンプリングしたCMFを透過型電子 顕微鏡で観察し、CMF長の分布と平均値を 求めた。CMFの幅は、過型電子顕微鏡、原 子間力顕微鏡、X線回折法より測定した。

また、セルロースと類似の分子構造を有し、 結晶密度のやや低いキチンについても検討 し、CMFとの比較を行った。 CMFの水分散液を超音波ホモジナイザー で処理すると、キャビテーションによりCM Fが断片化する(図1)。超音波キャビテー ションとは、液中で超音波の疎密波が伝播す る際に生じる直径10~250クロンの気 泡とその消滅に関する現象のことである。気 泡が消滅する際に、気泡を取り巻く溶媒は気 泡の中心に向かって放射状に流入する。流速 は気泡の中心からの距離に依存し、気泡付近 のCMFは中心に向かって引っ張られる。こ の引張応力をCMFの破断挙動より解析し、 CMFの引張強度を算出した。

図 1 超音波フラグメンテーション法によ る強度解析

低結晶性CMFと高結晶性CMFは共に、 超音波の処理時間が短い時点(5分)では、 長く、緩やかに撓んでいる様子が確認された。 低結晶性CMFは1ミクロン以上、ホヤは5 ミクロン以上の平均長を有していた。しかし、 超音波の処理時間を長くするにつれてCM Fは顕著に断片化し、1時間を超えると平均 長はある一定値に収束した。この一定値は、 低結晶性СМFで約300ナノメートル、高 結晶性CMFで約1.5ミクロンであった。 この測定値を超音波フラグメンテーション 法の理論式に適用し、各試料について引張破 断強度を算出した。その結果、各試料の引張 破断強度は、低結晶性CMFで平均約3GP a、高結晶性CMFで平均約6GPaと推定 された。すなわち、СМГは結晶性が高いほ ど高強度であることが明らかとなった。高結 晶性CMFでは、最大10GPaにも至る超 強度を示すものも散見された。

また、キチンミクロフィブリル(ChMF) の強度についても検討を進めた。サンプルは、 イカ、ハオリムシ、ハプト藻より精製した(図 2) 孤立分散したイカChMFの平均長は、 超音波キャビテーション処理が進むにつれ て低下し、80分以降はほぼ変化がなかった ため、400分間処理されたイカChMFは 十分に破断され、限界破断長に達しているも のとした。限界破断長に達する時間は、超音 波の周波数や振幅、分散液の量等の試験条件 にのみ依存するため、ハオリムシChMFと ハプト藻ChMFについても、同様の条件で 限界破断長を測定した。超音波フラグメンテ ーション法では、繊維状ナノ粒子の限界破断 長と断面積から強度を算出する。本研究では、 イカ、ハオリムシ、及びハプト藻由来のナノ

4.研究成果

フィブリル断面を、それぞれ既報に基づいて 正方形、平行四辺形、及び円形と近似した(図 3)。TEM観察及びX線回折法により、各 ChMFの幅を測定し、断面積を算出した。

図2 各ChMFのTEM像: a) イカ, b) ハ オリムシ, c) ハプト藻

図 3 各 C h M F の断面形状: a) イカ, b) ハ オリムシ, c) ハプト藻

以上の検討結果を強度算出式に代入し、各 C h M F の強度値を算出した。イカ及びハオ リムシ由来のキチンは共に型の結晶構造 を有するが、イカC h M F (3.2 G P a) はハオリムシC h M F (4.5 G P a)より も低い強度を示した。これは、イカC h M F の結晶性が比較的低いことに起因すると考 えられる。また、型の結晶構造を有するハ プト藻C h M F (1.4 G P a)は、結晶性 や密度が高いにも関わらず、その他2種の 型ChMF(イカ及びハオリムシ)と比較し て明瞭に低い強度を示した。これは、両者の 結晶構造の違いに由来するものと考えられ る。型ChMFには分子鎖が平行にパッキ ングされているに対し、型ChMFでは逆 平行であり、フィブリルの長軸方向に欠陥構 造が比較的多いのではないかと推察した。

5.主な発表論文等

〔雑誌論文〕(計3件)

- 1. <u>齋藤継之</u> "セルロースナノファイバー" 応用物理 2017, 86(2), 144–147, 査読無.
- Tanaka, R.; Saito, T.; Hänninen, T.; Ono, Y.; Hakalahti, M.; Tammelin, T.; Isogai, A. "Viscoelastic Properties of Core-Shell-Structured, Hemicellulose-Rich Nanofibrillated Cellulose in Dispersion and Wet-Film States" *Biomacromolecules* 2016, 17, 2104–2111, DOI: 10.1021/acs.biomac.6b00316, 查読有.
- Tanaka, R.; <u>Saito, T.</u>; Hondo, H.; Isogai, A. "Influence of Flexibility and Dimensions of Nanocelluloses on the Flow Properties of Their Aqueous Dispersions" *Biomacromolecules* 2015, 16, 2127–2131, DOI: 10.1021/acs.biomac.5b00539, 查読有.
- 〔学会発表〕(計8件)
- <u>Saito, T.</u> "Cellulose Nanofiber: Fundamentals and Potential of the Emerging Bio-based Material" The Pan Pacific Conference 2016, Korea, Seoul National University, 2016.10.27.
- <u>Saito, T.</u> "Cellulose Nanofiber: Structures and Fundamental Properties" Nordic Polymer Days 2016, Finland, Helsinki University, 2016.5.31.
- <u>齋藤継之</u> "セルロースナノファイバーの 基礎と応用事例"ふじのくにCNFフォ ーラム第1回技術講演会,静岡県,富士 市産業交流展示場,2016.1.12.
- Saito, T. "TEMPO-Oxidized Cellulose Nanofiber: Fundamentals and Applications" 2015 MRS Fall Meeting & Exhibit, Nanocellulose Materials and Beyond I, Hynes Convention Center, Massachusetts, US, 2015.12.2.
- <u>齋藤継之</u> "セルロースナノファイバーが 拓く未来 木材活用による高度部材イノ ベーション "みえCNF協議会キックオ フセミナー/みえリーディング産業展 2015、三重県、四日市ドーム、2015.11.20.
- <u>齋藤継之</u> "セルロースナノファイバーの 構造と基礎特性"第46回ナノ構造ポリマ ー研究会,東京都,味覚糖UHA館, 2015.11.13.
- <u>齋藤継之</u> "天然セルロースのTEMPO触 媒酸化" ナノセルロースフォーラム第5 回技術セミナー,東京都,木材会館,

2015.7.7.

8. <u>齋藤継之</u> "セルロースナノファイバーの 基礎特性と応用展開"ナノファイバー学 会第6回年次大会,東京都,東京大学弥 生講堂一条ホール,2015.7.6.

〔図書〕(計2件)

- 1. <u>齋藤継之</u>他,(株)加工技術研究会,機能 紙最前線~次世代機能紙とその垂直連携 に向けて~ 2017,第2部,239.
- 2. <u>齋藤継之</u>他,日刊工業新聞社,図解よく わかるナノセルロース 2015,第6章, 115.

6.研究組織
(1)研究代表者
齋藤 継之(SAITO, Tsuguyuki)
東京大学・大学院農学生命科学研究科・准教授
研究者番号:90533993