科学研究費助成事業

研究成果報告書

科研費

平成 29 年 6月 9 日現在 機関番号: 14202 研究種目: 若手研究(B) 研究期間: 2015~2016 課題番号: 15K16321 研究課題名(和文)フッ素MRIによる老人斑と神経原線維変化の同時イメージング法の開発 研究課題名(英文)Double-probe imaging for simultaneous detection of amyloid and tau using fluorine-19 MRI 研究代表者 柳沢 大治郎 (Yanagisawa, Daijiro) 滋賀医科大学・神経難病研究センター・准教授 研究者番号:50581112 交付決定額(研究期間全体):(直接経費) 3,000,000円

研究成果の概要(和文):本研究ではフッ素MRIによる老人斑のイメージングプローブとして、Shiga-X33を新規 合成し、その有用性を示した。さらに、Shiga-X35を合成し、神経原線維変化のイメージングプローブとしての 有用性を示した。Shiga-X33はCHF2基を有す一方、Shiga-X35はCF3基を有する。これらのフッ素のケミカルシフ トは-126 ppm(CHF2基)および-75 ppm(CF3基)を示すことから、ケミカルシフトイメージングにおいて充分に 分離可能である。以上より、本研究では老人斑と神経原線維変化をフッ素MRIを用いて同時にイメージングする ためのプローブの開発に成功した。

研究成果の概要(英文): In this project, we have synthesized Shiga-X33 as a novel 19F-MR probe which can be used for amyloid imaging. MR measurement using Shiga-X33 showed high accumulation of 19F-MR signals in the brain of APP/PS1 transgenic mice. Furthermore, we synthesized Shiga-X35 as another novel 19F-MR probe for tau imaging. MR measurement using Shiga-X35 showed high accumulation of the 19F-MR signals in the brain of rTg4510 tau transgenic mice. Structurally, Shiga-X33 has a CHF2 group which shows 19F chemical shift of -126 ppm. Meanwhile, Shiga-X35 has a CF3 group which shows 19F chemical shift of -75 ppm. There is sufficient difference of 19F chemical shift value between Shiga-X33 and Shiga-X35 to make images simultaneously for both 19F-MR signals by chemical shift imaging. Altogether, we have succeeded in developing the probes for simultaneous detection of amyloid and tau using 19F-MRI.

研究分野:神経科学

キーワード: アルツハイマー病 分子イメージング 老人斑 神経原線維変化

1.研究開始当初の背景

アルツハイマー病は認知症の半数以上を 占める疾患であり、特徴的な病理学的所見は 脳内での老人斑と神経原線維変化の形成で ある。老人斑は発症の10年以上前から出現 し、その後に神経原線維変化が形成され、認 知症状が出現するという経過をたどる。すな わち、早期診断には老人斑の検出が、発症予 測には神経原線維変化の検出が重要視され る。そこで近年、アルツハイマー病の病態解 明と診断のために、脳内の老人斑と神経原線 維変化を非侵襲的にイメージングする方法 の研究が進められ、それぞれの病変を個別に イメージングするためのプローブが開発さ れつつある。しかし、患者の負担軽減のため には、老人斑と神経原線維変化を一度の測定 で同時にイメージングすることが望ましい が、そのような技術は開発されていない。

申請者は老人斑の画像化のためのフッ素 MRI プローブを開発して、アルツハイマー病 遺伝子改変モデルマウスにおける老人斑の 蓄積を MRI で検出することに成功した (Yanagisawa et al, Biomaterials, 2010; Yanagisawa et al, Neuroscience, 2011)(特 願 2011-501696)。さらに、フッ素 MRI 信号 を高感度に検出するための構造を明らかに するなど、当該分野において着実に成果を上 げてきた(Yanagisawa et al, J Alzheimers Dis, 2014)(特願 2013-202531)。また現在、 神経原線維変化を画像化するためのフッ素 MRI プローブの開発を進めている。

2.研究の目的

フッ素 MRI を用いると、複数種のプロー ブを同時にイメージングすることができる。 申請者はフッ素MR画像の取得にケミカルシ フトイメージング法を用いている。ケミカル シフトイメージング法は特定のケミカルシ フト値に基づいたMR画像を取得する方法で ある。この方法では、プローブが複数存在す る状態であっても、プローブのケミカルシフ ト値が異なっていれば、それらを個別に画像 化することができる。フッ素 MRI プローブ のケミカルシフト値はフッ素原子の結合状 態に依存する。つまり、異なるフッ素置換基 を有する老人斑のプローブと神経原線維変 化のプローブを用いてケミカルシフトイメ ージングで画像化すると老人斑の画像と神 経原線維変化の画像を同時に取得できるこ とが予想される。そこで本研究計画では、フ ッ素 MRI による老人斑と神経原線維変化の 同時イメージング法を開発する。

3.研究の方法

(1)老人斑イメージングプローブ Shiga-X33 による画像化試験

これまでに開発した老人斑イメージング プローブ Shiga-X22 のトリフルオロメチル (CF₃)基をジフルオロメチル(CHF₂)基に置 換した化合物 Shiga-X33 を合成して、APP/PS1 遺伝子改変マウスに投与して7テスラ実験動 物用 MR 装置を用いて MR 画像化試験を実施し た。

(2)神経原線維変化イメージングプローブShiga-X35 による画像化試験

神経原線維変化の画像化プローブの基本 骨格となる化合物 Shiga-X34 を合成し、ヒト アルツハイマー病脳切片を用いて、神経原線 維変化への結合性を評価した。結合性を示し た化合物に、ポリエチレングリコール鎖を介 して CF₃基を導入することで、フッ素 MRI 用 のプローブ Shiga-X35 を合成した。次に、タ ウ遺伝子改変マウス(rTg4510 マウス)にプ ロープを投与して、7 テスラ実験動物用 MR 装 置を用いて MR 画像化試験を実施した。測定 終了後、脳を摘出して組織化学的解析を実施 した。

4.研究成果

(1)Shiga-X33 の CHF₂基のフッ素ケミカルシ フト値は-126 ppm であった。Shiga-X35 など の CF₃基のフッ素ケミカルシフト値は-75 ppm であり、同時イメージングにおいて充分に分 離可能な値である。

図 1. Shiga-X33の構造と CF₃基と CHF₂基のフ ッ素ケミカルシフト

(2) Shiga-X33 による MR 画像化試験

麻酔下のマウスに 20%クレモフォール含有 生理食塩水で溶解した Shiga-X33(200 mg/kg) を尾静脈から投与した。4 時間経過後に安楽 死させ、7 テスラ実験動物用 MR 装置を用いて 頭部の MRI を測定した。フッ素 MRI の結果、 野生型に比べ APP/PS1 遺伝子改変マウスでは 頭部に著しい信号の集積が認められた。

図 2. Shiga-X33 によるフッ素 MRI

(3) Shiga-X34 の結合性試験

ヒトアルツハイマー病脳切片を用いて Shiga-X34 の神経原線維変化への結合性を評 価した。Shiga-X34 の蛍光が AT8 陽性のタウ 病変と共局在していたことから、Shiga-X34 は神経原線維変化に結合することが示唆さ れた。そこで、Shiga-X34 にポリエチレング リコール鎖を介して CF₃基を導入することで、 フッ素 MRI 用のプロープ Shiga-X35 を合成し た。

Shiga-X34 H₃C N· Shiga-X35

図 3. Shiga-X34 と Shiga-X35 の構造。下図 はヒトアルツハイマー病脳切片における Shiga-X34 の結合試験の結果。

(4) Shiga-X35 による MR 画像化試験

Shiga-X35 を 20%クレモフォール含有生理 食塩水で溶解して、rTg4510 マウスおよび野 生型マウスに尾静脈から投与した(200 mg/kg)。投与終了後、マウスを7テスラ実験 動物用 MR 装置に移し、頭部の MR を8時間測 定した。図4に結果を示す。rTg4510 マウス では前脳領域にフッ素 MR 信号の強い集積が 認められた。前脳領域におけるフッ素 MR 信 号を半定量したところ、野生型マウスに比べ てrTg4510 マウスでは信号強度が有意に高か った。

図 4. Shiga-X35 によるフッ素 MRI。上段は野 生型マウス、下段は rTg4510 マウス。左から、 プロトン MRI、フッ素 MRI、それらの重ね合 わせ画像を示す。

図 5. 野生型マウス (n = 3) と rTg4510 マウス (n = 3)の前脳領域におけるフッ素 MR 信

号の信号強度の比較。

(5) 組織化学的解析

rTg4510 マウスのタウ病変の分布を解析した。ヒトタウ(HT7)について免疫組織化学的解析を実施したところ、rTg4510 マウスでは主に前脳の海馬や大脳皮質において発現が認められた。ついで、タウ病変のマーカーであるリン酸化タウ(AT8)について解析したところ、同じく海馬や大脳皮質で発現が認められた。

図 6. rTg4510 マウスにおけるヒトタウと AT8 陽性リン酸化タウの分布

(6)Shiga-X35 投与 rTg4510 マウス脳切片に おける蛍光顕微鏡観察。

MR測定終了後のrTg4510マウスの脳切片を 作製し、蛍光顕微鏡観察を実施したところ、 Shiga-X35の蛍光が海馬や大脳皮質で認めら れた。AT8の免疫蛍光染色と組み合わせたと ころ、Shiga-X35の蛍光が、AT8 陽性のタウ 病変に一致して認められた。Shiga-X35 は血 液脳関門を通過して脳内でタウ病変と結合 することが示唆された。

 Shiga-X35
 AT8
 Merge

 Image: Comparison of the state of t

図 7. Shiga-X35 を投与した rTg4510 マウス 脳切片の蛍光顕微鏡観察

以上、本研究ではフッ素 MRI による老人斑 のイメージングプローブとして、Shiga-X33 の有用性を示した。さらに、神経原線維変化 のイメージングプローブとして、Shiga-X35 を開発した。Shiga-X33 は CHF₂基を有す一方、 Shiga-X35 は CF₃基を有する。これらのフッ素 のケミカルシフトは-126 ppm(CHF₂基)およ び-75 ppm(CF₃基)を示すことから、ケミカ ルシフトイメージングにおいて充分に分離 可能である。すなわち、本研究により老人斑 と神経原線維変化をフッ素 MRI を用いて同時 にイメージングするためのプローブの開発 に成功した。

5.主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計13件) <u>Yanagisawa D</u>、(他8名、筆頭著者)、 Fluorodopa is a promising fluorine-19 MRI probe for evaluating striatal dopaminergic function in a rat model of Parkinson's disease. Journal of Neuroscience Research, 95, 1485-1494, 2017. 査読あり、DOI: 10.1002/jnr.23983

Ibrahim NF, <u>Yanagisawa D</u>、(他8名、2 番目), Tocotrienol-rich fraction modulates amyloid pathology and improves cognitive function in A PP/PS1 mice. Journal of Alzheimer's Disease, 55, 597-612, 2017. 査読あり、DOI: 10.3233/JAD-160685

Inden M, <u>Yanagisawa D</u>(他2名、2番目) Therapeutic effects of mesenchymal stem cells for Parkinson's disease. Annals of Neurodegenerative Disorders. 1, 1002, 2016. 査読あり、 https://www.iscimedcentral.com/Neurodeg

enerativeDisorders/neurodegenerativedis orders-1-1002.pdf

Tooyama I, <u>Yanagisawa D</u>、(他8名、2番目), Amyloid imaging using fluorine-19 magnetic resonance imaging (19F-MRI). Ageing Research Reviews, 30, 85-94, 2016. 査読あり、DOI: 10.1016/j.arr.2015.12.008

Ogawa T, Irikawa N, <u>Yanagisawa D</u>、(他 3名、3番目) Taste detection and recognition thresholds in Japanese patients with Alzheimer-type dementia. Auris Nasus Larynx, in press. 査読あり、 DOI: 10.1016/j.anl.2016.06.010

Wang X, Yang H, Yanagisawa D、(他6名、 3番目) Mitochondrial ferritin affects mitochondria by stabilizing HIF-1 in retinal pigment epithelium: implications for the pathophysiology of age-related macular degeneration. Neurobiology of Aging, 47, 168-179, 2016. 査読あり、DOI: 10.1016/j.neurobiolaging.2016.07.025 Inden M, Takata T, <u>Yanagisawa D</u>、(他4 名、3番目、 4 Nicotinic acetylcholine receptor modulated by galantamine on nigrostriatal terminals regulates dopamine receptor-mediated rotational behavior. Neurochemistry International, 94, 74-81, 2016. 査読あり、DOI: 10.1016/j.neuint.2016.02.008

Kitamura Y, Inden M, Kimoto K, Takata K, <u>Yanagisawa D</u>、(他5名、5番目) Effects of a DJ-1-binding compound on spatial learning and memory impairment in a mouse model of Alzheimer's disease. Journal of Alzheimer 's Disease, in press. 査読あり、 DOI: 10.3233/JAD-160574

Yanagisawa D、(他6名、筆頭著者), Novel curcumin derivatives as potent inhibitors of amyloid aggregation. Biochemistry and Biophysics Reports, 4, 357-368, 2015. 査読あり、DOI: 10.1016/j.bbrep.2015.10.009

Yanagisawa D、(他7名、筆頭著者) Curcumin derivative with the substitution at C-4 position, but not curcumin, is effective against amyloid pathology in APP/PS1 mice. Neurobiology of Aging, 36, 201-210, 2015. 査読あり、DOI: 10.1016/j.neurobiolaging.2014.07.041

Taguchi H, <u>Yanagisawa D</u>、(他4名、2番目), Synthesis and tautomerism of curcumin derivatives and related compounds. Australian Journal of Chemistry, 68, 224-229, 2015. 査読あり、DOI: 10.1071/CH14464

McClure R, <u>Yanagisawa D</u>、(他8名、2番目), Inhalable curcumin: offering the potential for translation to imaging and treatment of Alzheimer's disease. Journal of Alzheimer's Disease, 44, 283-295, 2015. 査読あり、DOI: 10.3233/JAD-140798

Yang H, Guan H, Yang M, Liu Z, Takeuchi S, <u>Yanagisawa D</u>、(他3名、6番目)、 Up-regulation of mitochondrial ferritin by proinflammatory cytokines: Implications for a role in Alzheimer's disease. Journal of Alzheimer's Disease, 45, 797-811, 2015. 査読あり、DOI: 10.3233/JAD-142595

[学会発表](計6件)

<u>Daijiro Yanagisawa</u>, Effects of Novel Curcumin Derivative with C-4 Substituent on Cognitive Impairment and Amyloid Deposition in Appswe/PS1dE9 Mice、 Alzheimer's Association International Conference 2015、平成 27 年 7 月 22 日、 Washington, DC (米国)

<u>柳沢大治郎</u>、フッ素 MR 画像化法による A オリゴマーの検出の開発、第 39 回日本神 経科学大会、2016 年 7 月 20 日、パシフィコ 横浜(神奈川県・横浜市)

<u>柳沢大治郎</u>、アルツハイマー病の病態解 明のためのフッ素 MRI によるダブルプローブ イメージング法の開発、第 11 回日本分子イ メージング学会学術集会、2016 年 5 月 29 日、 神戸国際会議場(兵庫県・神戸市)

<u>柳沢大治郎</u>、アルツハイマー病の病態解 明のためのフッ素 MRI によるダブルプローブ イメージング法の開発、第 11 回日本分子イ メージング学会学術集会、2016 年 5 月 28 日、 神戸国際会議場(兵庫県・神戸市)

<u>柳沢大治郎、クルクミン誘導体によるア</u> ミロイド 凝集抑制作用の解析、第 38 回日 本神経科学大会、2015 年 7 月 30 日、神戸国 際展示場(兵庫県・神戸市)

<u>柳沢大治郎</u>、フッ素 MRI を利用した A オ リゴマーの画像化法の開発、第 10 回日本分 子イメージング学会学術集会 2015 年 5 月 20-21 日、タワーホール船堀(東京都・江戸 川区)

〔産業財産権〕 取得状況(計1件)

名称:神経難病の画像診断薬及び体外診断薬 発明者:遠山育夫、田口弘康、森川茂廣、漆 谷真、柳沢大治郎、永江知音、白井伸明、平 尾浩一、加藤雅也、木村博彦、岡田隆士 権利者:滋賀医科大学、滋賀県 種類:特許 番号:特許第5699286 号、US 8,956,589 B2 取得年月日:平成27年2月27日 国内外の別:国内および米国

〔その他〕 ホームページ等 http://mnrc.jp

 6.研究組織
(1)研究代表者
柳沢 大治郎(YANAGISAWA, Daijiro)
滋賀医科大学・神経難病研究センター・准 教授
研究者番号:50581112