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Raman microscopy provides rich images of living cells. Because Raman signal
is inherently weak, care must be taken in its processing and analysis. Here, | focused on precisely
and accurately processing contamination in the data so that further analyses provided appropriate
characterization.
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Reduction of Background contamination

Removal of background contamination from
Raman spectroscopic and microscopic
measurements is a notoriously difficult
task due to the origin of the contamination.
Experimental substrates such as quartz
glass produce a Raman spectrum of their own,
which is wvariable along the Raman
wavenumber dimension. Commonly used
techniques for background estimation,
including recursive polynomial fitting,
are plagued by subjective choices and poor
extraction of the actual background
spectrum.

During the course of this research, a
method based in statistics and utilizing
a Gaussian mixture model(GMM) was
developed and tested on synthetic and
experimental data. The method relies on
the statistics generated by the large
number of pixels in each image, and that
for a particular contamination will be
predictable across the spatial dimensions
of the image frame. Next, the background
intensity is taken to be the extracted
distribution with the smallest mean
intensity, and spatially-dependent
probabilities of an intensity falling
within the background distribution are
assigned to each pixel in the image frame.
This procedure is repeated for all values
of the Raman shift, producing a background
spectrum. Fig. 1 compares average
background spectra extracted from an
experimental image having a quartz glass
substrate that were calculated with the
GMM-based method and the recursive
polynomial fitting algorithm, but are
recognized by the GMM-based algorithm.
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Figure 1. Comparizon of background spectra for the
recursive polynomial fit method (blue) and the GMM
methaod (red).

Spatial Recognition of Signal

In the classification of spectra acquired
from Raman images, it is important to
exclude those spectra containing only
contributions from the experimental
substrate; otherwise  classification
analysis is adversely impacted by their
presence. Commonly, clustering algorithms
are involved as a preliminary step in
identifying such spectra. During the
development of the GMM background
recognition method, it was realized that
the algorithm also serves as a spatial
recognition algorithm, providing the
ability to simultaneously identify the
background spectrum as well as identify
spectra that contain mostly background
contamination so that they may be removed
from the classification analysis.
Furthermore, because exclusion of these
spectra with the GMM is quantitatively
based on identifying background
contamination rather than a simple
partitioning as in clustering-based
methods, the GMM-based algorithm. The Fig.
2 compares an experimental image of a cell
culture containing Human thyroid

carcinoma along with the separation of
background pixels from those pixels
cells,

containing signal from the
displaying good visual agreement.
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Figure 1. {top) Raman image of human thyroid
carcinoma cell culture. (bottom) Dark-colared pixels
were identified by the GMM as containing
background spectra while light colored pixels were
identified as containing Raman signal from the cells.



Reduction of Noise Contamination

Another issue in the treatment of Raman
microscopic images is the prevalence and
magnitude of detection noise. Due to its
inherently weak signal, Raman microscopic
images typically have signal-to-noise
rations on the order of 0.1-1. A common
method currently 1in use 1in Raman is
singular value decomposition, inwhich all
the spectra in the image are aligned in the
wavenumber dimension, the decomposition
is performed, singular values falling
below a certain magnitude are set to zero,
and then the spectra are reconstructed.
This method, wavelet denoising has been
used in Raman microscopy, but with little
success. This in mostly due to the
construction of wavelet denoising. In
particular, wavelet denoising suppresses
low magnitude, high frequency
fluctuations. Many Raman signals are
narrow peaks with small intensity. Such
signals are removed my traditional wavelet
denoising methods.

Towards the end of a quantitative,
objective, and effective denoising
algorithm was developed using the
2-dimensional wavelet transformation and
the average behavior along the wavenumber
dimension. Briefly, issues arise with
traditional wavelet methods when the
magnitude of the signal is within the
fluctuation arising from the noise
magnitude.  However, modifying the
traditional algorithm to use the average
behavior over a local wavenumber range
allows for estimation of the signal
magnitude, and subsequent noise removal
around this value. Application of this
algorithm to experimental and synthetic
data show that the modified wavelet
algorithm performs as well as singular
value decomposition while offering the
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Figure 1. Comparison of noisy, single-pixel spectrum
{gray) to its denocised counterpart (blue).

advantages of being quantitative and
requiring no counterpart that was produced
with the modified wavelet algorithm.

Despite these advances in signal
processing for Raman microscopy, spatial
partitioning of the spectra into their
cellular components remains a difficult
task due to the chemical variation
throughout the cell as well as within a
particular organelle. Although various
methods of unsupervised clustering, such
as k-means clustering, agglomerative and
divisive hierarchical clustering, and
rate-distortion theory have been applied,
positive results remain elusive. Common
results include partitions of similar
chemical environments from different
organelles, such as nuclear membranes with
mitochondrial membranes. Future efforts
will need to include spatial as well as
spectral relationships, perhaps venturing
into the realm of supervised
classification.

4

1. J. Nicholas Taylor, Katsumasa Fujita,
Tamiki Komatsuzaki: *“ Data Driven
Approaches to Raman Microscopic
Analysis” , Biophysical Society of
Japan Annual Meeting, 2016 11 25

27 , Tsukuba International
Congress Center( )

2. J. Nicholas Taylor, Katsumasa Fujita,
Tamiki Komatsuzaki: *“ Data Driven
Approaches to Raman Microscopic
Analysis” , Hiroshima Workshop for
Theory and Experiment, 2016 10 6

9 , Hiroshima University(
)

3. J. Nicholas Taylor: *“ Data-driven
quantification of  heterogeneous
microenvironments in live-cell Raman
microscopic images” , 2016 Annual
Meeting of Biophysical Society, 2016

2 26 3 3 , Los Angeles,
U.S.A.

4. J. Nicholas Taylor: *“ Data-driven
quantification of  heterogeneous
microenvironments in live-cell Raman
microscopic images” , Pacifichem,
2015 12 16 , Hawaii, U.S.A.




@D
Taylor Nicholas

50750824



