科学研究費助成事業

研究成果報告書

E

今和 元年 6 月 2 0 日現在

研究種目: 若手研究(B) 研究期間: 2015~2018 課題番号: 15K21619 研究課題名(和文)自家蛍光指紋分光法による病原性細菌の迅速検出手法の開発

研究課題名(英文)Development of rapid detection method of pathogenic bacteria by intrinsic fluorescence fingerprint spectroscopy

研究代表者

機関番号: 12601

吉村 正俊(Yoshimura, Masatoshi)

東京大学・大学院農学生命科学研究科(農学部)・助教

研究者番号:10593725

交付決定額(研究期間全体):(直接経費) 3.000.000円

研究成果の概要(和文):本研究は、蛍光指紋分光法によって食品に関連した病原性細菌を迅速に検出する手法の開発を目的として、 蛍光指紋による菌種判別、 蛍光指紋による菌数定量、そして、 多検体検査システムの構築、の3つを実施した。蛍光指紋とは、励起光の波長を連続的に変化させながら測定した複数の蛍光スペクトルを並べた3次元データのことである。細菌の蛍光指紋によって、菌種に固有な蛍光パターンの類似性から 菌種判別手法を、自家蛍光の強度と生菌数の相関から 菌数定量手法を、それぞれ開発した。 多検体検査シス テムに関しては、生菌数定量モデルの開発までは行うことができたが、菌種判別の実装まではいたらなかった。

研究成果の学術的意義や社会的意義 本研究は、昨今の技術発展により実用的になった蛍光指紋分光法と、データサイエンス手法を統合させ、細菌 の自家蛍光に含まれる多くの情報を活用することにより、新たな病原性細菌の迅速検出手法の開発を行うという 点において、学術的新規性がある。これにより、従来は不可能であった培養や試薬を必要としない迅速な細菌の

検知・同定の可能性が広がった。 応用的側面では、本手法が実用化されれば、食品製造ラインにおける製品の細菌汚染の出荷前検査や細菌混入 経路の追跡などへの応用が可能であり、安全な食品を提供する義務を負う食品企業のニーズに応えるだけでな く、消費者の食品に対する信頼向上に大きく寄与すると期待される。

研究成果の概要(英文):The present study carried out the following three for the purpose of developing a rapid method of pathogenic bacteria by fluorescence-fingerprint (FF) spectroscopy: (1) Identification of bacterial species by FF, (2) Quantification of bacterial count by FF, and (3) Construction of multi-analyte test system.

The fluorescence-fingerprint (FF) is three-dimensional data in which fluorescence spectra measured while changing the wavelength of excitation light continuously. We developed (1) a method to determine the bacterial species based on the similarity of fluorescence patterns unique to bacterial species by FF of bacteria, and (2) a method to quantify the number of bacteria based on the correlation between the intensity of autofluorescence and the number of viable bacteria. (3) With regard to the multi-analyte test system, although the development of the viable cell count quantification model was carried out, the implementation of the strain identification was not completed.

研究分野: 農業情報工学

キーワード: 蛍光指紋分光法 励起蛍光マトリックス 病原性細菌 多変量解析 ケモメトリックス 数定量 菌種判別 菌 様 式 C-19、F-19-1、Z-19、CK-19(共通)1.研究開始当初の背景

日本国内においては、食品衛生法に基づく微生物規格基準により、食品毎に汚染指標菌に対す る培地検査方法が定められているが、培地による従来法は検査に時間がかかることが問題であ る。一方、従来法にかわる迅速検査手法として、DNA プローブ法や PCR 法といった分子生物 学的手法が開発されているが、対象菌種が限られ、操作が複雑かつ試薬が高価であることが問題 である。

このような状況の中、新たな細菌検出手法として、細菌細胞内の自家蛍光分子による蛍光特性 に関する基礎的研究が行われており、モでル系においては菌種判別の可能性が示唆されている。 しかし、国際的な基礎研究の進展に比して日本における食品および細菌の自家蛍光の研究は極 めて少なく、また先行研究で扱われている菌種は限られている。

これを踏まえて、研究代表者はこれまでに蛍光指紋と多変量解析による食品中の菌数推定手 法の研究開発に取り組んできた。さらに研究代表者は、国内において問題とされる菌種について、 蛍光指紋による菌種判別の可能性を見出し、報告してきた。この自家蛍光指紋分光法は細菌の検 知・同定のための、非接触・試薬不要・迅速・簡便な手法となる可能性があり、実用化のために 今後は、各種細菌種・菌株の蛍光指紋ライブラリの構築や菌種を識別する蛍光パターンの規格化 などの基礎データの蓄積と、それを基にした細菌の判別・定量技術の研究開発が必要であると考 えられた。

2. 研究の目的

本研究は、蛍光指紋分光法によって食品に関連した病原性細菌を迅速に検出する手法の開発 を目的とした。具体的な研究項目として、①蛍光指紋による菌種判別手法の開発、②蛍光指紋に よる菌数定量手法の開発、③ファイバープローブによる蛍光指紋計測と①②を組み合わせた迅 速化のための多検体検査システムの構築、の3つを計画した。

3. 研究の方法

本研究のキーテクノロジーである蛍光指紋とは、励起光の波長を連続的に変化させながら測定した複数の蛍光スペクトルを並べた3次元で一タのことである(励起蛍光マトリックスともいう)。蛍光ピークの極大から裾野に至る蛍光特性を網羅的に観測することによって、物質に固有のパターンを得ることができる。また、幅広い励起蛍光波長範囲を走査することによって一度の測定で様々な蛍光物質を網羅的に測定することが可能であり、スペクトルの多変量解析によって複数成分を同時に解析することが可能である。

3つの研究項目のうち、第一段階として、蛍光指紋によって細菌の菌種を判別する手法の開発 を行った。まず、各種細菌の蛍光指紋を収集し、細菌毎にで一タを平均化し、これをその菌種お よび菌株の参照蛍光指紋として定義することで蛍光指紋ライブラリを構築する。次に、未知の試 料の蛍光指紋と既知の参照蛍光指紋のパターンが似ている度合いを、類似度などで数量化する ことによって、対象菌種を判定する手法の開発を行った。

第二段階として、各種細菌の増殖過程において一定時間毎に蛍光指紋および生菌数の計測を 行い、多変量回帰分析によって、蛍光指紋による菌数定量のための手法の開発を行った。具体的 には、検出対象とする各種細菌について、濃度の異なるサンプルで測定した蛍光指紋を説明変数、 コロニーカウント法などで測定した生菌数を目的変数とし、PLS 回帰分析などの多変量解析手 法によって、蛍光指紋から各種細菌の生菌数定量モでルの構築を行った。

第三段階として、光ファイバープローブと自動 XY ステージを用いた迅速化のための多検体検 査システムの開発を行った。まず、第一・第二段階で開発した手法を基に、ファイバー光学系で の菌種判別・菌数定量のモでルを構築する。その上で、取得したで一タに対し、①蛍光指紋の類 似度で菌種判別を行い、②確定した菌のモでルを適用して菌数定量を行う、判別・定量手法を構 築する。そして、XY 方向に走査可能なステージとマイクロプレートを用いて複数検体の測定を 自動化することによって、多検体検査システムの構築を行った。

4. 研究成果

本研究で得られた成果について、3つの研究項目に分けて以下に示す。

蛍光指紋による菌種判別手法の開発

簡便かつ迅速な菌種判別手法として、細菌の自家 蛍光に関する研究が2000年初頭から行われてお り、微生物はエネルギー生成反応に関連した無数の 細胞内生体分子を有している。その蛍光特性はこれ² らの生体分子を有用な自家蛍光プローブたらしめ³ ると考えられている。そのような、細菌に含まれる 自家蛍光分子の一覧を表1に、その蛍光指紋データ⁴ を図1に、それぞれ示す。各蛍光分子の励起および⁵ 蛍光極大波長は異なるため、全ての蛍光分子はそれ

表1 蛍光分子の一覧

	自家蛍光分子	励起極大波長	発光極大波長
		[nm]	[nm]
	芳香族アミノ酸		
1	トリプトファン	280	300-350
2	チロシン	275	300
3	フェニルアラニン	260	280
	酵素及び補酵素		
4	FAD, フラビン	450	535
(5)	NADH	290, 351	440, 460
9	NADPH	336	464

ぞれ固有の蛍光特性を有しているが、そのスペクトルは互いに重なり合ったものとなることが 図1から判る。これが蛍光指紋データの解析に多変量解析などが用いられる所以である。 細菌の蛍光指紋の例として、大腸菌のデ ータを図2に示す。表1に上げた蛍光分子 のうち、実際には、3種類の物質(①芳香族 アミノ酸・②NAD(P)H・③FADおよびフラビ ン)に由来すると思われる自家蛍光が観測 された。芳香族アミノ酸は細胞中のタンパ ク質やペプチド中のアミノ酸残基として存 在し、その微小環境の情報を含むと考えら れる。また、補酵素のNAD(P)HやFAD及び フラビン由来と思われる自家蛍光も観測さ れ、微生物の代謝活性や生理状態に密接に 関係する物質の情報を得ることができると 考えられる。このような蛍光指紋測定の 実験プロトコルを確立した。

菌種判別では、測定によって得られた図
 2のような蛍光指紋データから、波長条件の選択やスペクトルの前処理を行った後、
 PLS 判別分析などを行うことによって、菌種の判別モデルを構築することができた。
 菌種判別結果の例として、次の5種類の菌
 種(Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus, Listeria monocytogenes, Bacillus subtilis)を対象とした場合の混合行列を表2に示す。全体では
 78%程度の判別精度が得られているが、

リステリア(Listeria)の精度が低い点などは、さらなる改善が求められる。

表2 菌種判別結果の例

		TPR	FPR	Error Rate	Precision	
Class	Bacillus	100%	13%	10%	67%	TPR: 真陽 FPR: 偽陽 Error Rate Precision:
	Ecoli	75%	6%	10%	75%	
	Listeria	25%	6%	20%	50%	
	Salmonella	100%	0%	0%	100%	
	Staphylo	100%	0%	0%	100%	
	Total	80%	5%	8%	78%	

TPR: 真陽性率 True Positive Rate FPR: 偽陽性率 False Positive Rate Error Rate: 不正解率 Precision: 精度

また、細菌の蛍光指紋を測定するための実験プロトコルに関して、懸濁液サンプルの調製において、サンプルの濃度を標準化するために濁度を調整する段階での労力が大きく、時間がかかることが課題の遂行において問題であった。細菌の濃度は蛍光強度に大きく影響し、また、生体試料は時間とともに変化しやすく、サンプル調製後の迅速な測定が求められる。したがって、サンプル調製の迅速化を目的として、細菌懸濁液の濁度調整システムを構築した。同システムは分光 光度計・超小型スターラー・シリンジポンプなどから構成され(図3)、自作の制御プログラム により、濁度をモニタリングしながらポンプで細菌懸濁液を送液し、目標濁度に到達した時点で 停止する(図4)。目標とする濁度に応じて、流速などのポンプ制御パラメータを適切に選択す ることにより、迅速かつ高い精度での調整が可能となり、これによって蛍光指紋測定のためのサ ンプル調製が大幅に迅速化および省力化された。

② 蛍光指紋による菌数定量手法の開発

本研究項目では、細菌懸濁液における菌数を 知るための手法として、蛍光指紋による推定手 法の開発を行った。比較対象として、培養中に 菌数を推定するのによく使われる濁度法も合わ せて実施した。培地中で細菌が増殖すると、細 菌の増殖に伴って培地は次第に濁っていくた め、この濁り具合(濁度および吸光度)を光学 的に測定することで、菌数を推定することがで きる。一方、蛍光指紋を用いた場合、細菌の増 殖に伴って細菌に含まれる蛍光分子の量が増加 するため、その蛍光強度を測定することで、菌 数を推定することができる。

例として、図5に大腸菌を対象とした場合の 生菌数と濁度および蛍光強度の関係を示す。濁 度の場合、細菌による吸収・散乱を捉えており、 細菌の検量線を作れる範囲はおよそ3桁程度の ダイナミックレンジが得られる。一方、蛍光の 場合は、細菌に含まれる蛍光分子の発光を捉え ているため、濁度に比べて検出感度が2~3桁 高く、検出器の感度を変化させることで最大で 6桁程度のダイナミックレンジが得られる。こ

図5 生菌数と濁度および蛍光の関係

6 桁程度のダイナミックレンジが得られる。ここで示した例では、濁度では約10⁶~10⁸ CFU/ml のオーダーを推定することができるのに対して、蛍光指紋では約10⁴ CFU/ml のオーダーから、より高感度に菌数を推定できる可能性が示された。

③ ファイバープローブによる蛍光指紋計測と多検体検査システムの構築

本研究項目では、ファイバープローブを用いた多点計測システムの作成を行った。図6にシス テムの概要を示す。同システムでは、蛍光分光光度計に接続された光ファイバープローブを暗室 状態の試料室に導き、プローブ先端と試料を一定距離に保った上で、自動 XY ステージによって 多点を移動させることで、各点の蛍光指紋の測定を行うことができる。

同システムを用いることで、菌数定量モデルの開発までは行うことができたが、菌種判別の実装まではいたらなかった。ファイバープローブを用いた場合の菌数定量の例として、牛肉表面の 生菌数を推定した結果を図7に示す。この例では、一般生菌数を対象として、決定係数 R² = 0.859, 推定誤差 RMSEP = 0.831 CFU/ml の推定精度が得られている。

5. 主な発表論文等

〔雑誌論文〕(計4件)

C. Feng, <u>M. Yoshimura</u> *et al.*, "Estimation of adenosine triphosphate content in readyto-eat sausages with different storage days, using hyperspectral imaging coupled with R statistics", *Food Chemistry*, **264**, 419-426 (2018).

DOI: 10.1016/j.foodchem.2018.05.029(査読有)

C. Feng, <u>M. Yoshimura</u> *et al.*, "Real-time prediction of pre-cooked Japanese sausage color with different storage days using hyperspectral imaging", *Journal of the Science of Food and Agriculture*, **98**, 2564-2572 (2017).

DOI: 10.1002/jsfa.8746(査読有)

C. Feng, <u>M. Yoshimura</u> *et al.*, "Hyperspectral Imaging in Tandem with R Statistics and Image Processing for Detection and Visualization of pH in Japanese Big Sausages Under Different Storage Conditions", *Journal of Food Science*, **83**, 385-366 (2017).

DOI: 10.1111/1750-3841.14024 (査読有)

D. M. Mala, <u>M. Yoshimura</u>, *et al.*, "Fiber optics fluorescence fingerprint measurement for aerobic plate count prediction on sliced beef surface", *LWT - Food Science and Technology*, **68**, 14-20 (2015).

DOI: 10.1016/j.lwt.2015.11.065(査読有)

〔学会発表〕(計4件)

<u>吉村正俊</u>ほか,「蛍光指紋イメージングによる牛肉表面の生菌数可視化」,農業環境工学関連 5 学会 2015 年合同大会(2015).

D. M. Mala, <u>M. Yoshimura</u>, *et al.*, "Development of fluorescence fingerprint monitoring system for microbial content of beef", 農業環境工学関連5学会2015年合同大会 (2015).
 <u>吉村正俊</u>ほか, 「細菌の蛍光指紋測定のための濁度調整システム」, 日本食品科学工学会平成27年度関東支部大会 (2016).

<u>吉村正俊</u>ほか,「蛍光指紋分光法と PLS 判別分析による菌種判別の試み」,平成 28 年度日本分 光学会年次講演会(2016).

D. M. Dheni, <u>M. Yoshimura *et al.*</u>, "A Novel Indirect Method for Microbial Growth Prediction on Meat by Fluorescence Fingerprint", 農業食料工学会第75回年次大会 (2016).

6.研究組織
(2)研究協力者
研究協力者氏名:川崎 晋
ローマ字氏名:KAWASAKI, Susumu
所属研究機関名:国立研究開発法人農業・食品産業技術総合研究機構
部局名:食品研究部門
職名:上級研究員

※科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属されます。