科学研究費助成事業(基盤研究(S))研究進捗評価

課題番号	16H06316	研究期間	平成 2 8 (2016)年度 ~令和 2 (2020)年度
研究課題名	自閉症の生物学的統合研究	研究代表者	内匠 透
		(所属・職)	(理化学研究所・脳神経科学研究
		(平成31年3月現在)	センター・チームリーダー)

【令和元(2019)年度 研究進捗評価結果】

評価 評価基		評価基準	
	A+	当初目標を超える研究の進展があり、期待以上の成果が見込まれる	
0	A	当初目標に向けて順調に研究が進展しており、期待どおりの成果が見込まれる	
		当初目標に向けて概ね順調に研究が進展しており、一定の成果が見込まれるが、一部	
	A-	に遅れ等が認められるため、今後努力が必要である	
	В	当初目標に対して研究が遅れており、今後一層の努力が必要である	
	С	当初目標より研究が遅れ、研究成果が見込まれないため、研究経費の減額又は研究の	
		中止が適当である	

(意見等)

本研究は、代表的な社会性障害である自閉症に対して、細胞・シナプス、回路・行動、環境要因という3つのレベルで最先端技術を導入した多面的解析を行い、その結果を統合することにより、自閉症の病態解明に迫ることを目的としたものである。

これまで順調に研究が進展しており、幾つかの重要な研究成果を得ている。特に、細胞・シナプス研究での CNV (copy number variation) データベース、CNV 細胞ライブラリ、細胞分化系の構築、回路・行動研究での in vivo 自由行動下での生体 Ca イメージングに関する研究成果は高く評価できる。今後、環境要因レベルの脳腸連関研究を加速するとともに、異なるレベルの研究成果を関連付けて解析することにより、自閉症の病態生理に関する統合的理解に迫ることを期待する。