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We have shown how complex spatio-temporal patterns can arise from the interaction of two planarly
stable fronts, without the need for instability as in other reaction-diffusion models. We have given
rigorous results on the system"s limit behaviour even if no vector comparison principle holds.

The ecological invasion problem in which a weaker exotic species invades an
ecosystem inhabited by two strongly competing native species can be modelled by a three-species
competition-diffusion system. We have proved rigorously that when the invader is very strong it will

always be able to replace the native species, while it will never survive in the new environment if
it is sufficiently weak. In the intermediate cases, coexistence occurs in complex spatio-temporal
patterns, such as regular or breathing spirals, periodic multi-core spiral patterns or chaotic
spiral turbulence. The origin of and transition between such patterns lies in the interaction of two
planarly stable fronts. By studying the bifurcation structure of their one-dimensional equivalent
(travelling waves), we can also understand the mechanisms governing the two dimensional case.
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As the starting point, we have to mention one of the central organizing concepts in community ecology,
the law of competitive exclusion. This principle was originally proposed by a Russian ecologist, G. Gause
(1934), based on his laboratory experiments on bacterial cultures. It states that two biological species
competing for the same limited resources cannot coexist, resulting in the eventual extinction of one of
them, that is, in competitive exclusion. As a consequence, it predicts that each species should specialize
in order to find its own ecological niche (e.g., Darwin’s finches on the Galapagos Islands). However,
natural ecosystems often display a rich biodiversity even when resources are limited, in apparent
contradiction with the principle (e.g., oceanic plankton; tropical rainforests). The understanding of the
mechanisms behind such biodiversity is an active field of research in theoretical ecology. Usually species
coexistence arises from the hypotheses of the principle not being satisfied, i.e., from the environment
varying in space and/or time, but indirect competitive interactions may also cause coexistence. The
simplest situation is to examine the possibility of coexistence of two competing native species (say, Ui
and up) when athird species (say, us) invades the ecosystem from outside. A possible model for this setting
is the following three-species competition system of ODEs of Lotka-Volterratype:
wherer;, &, and by are positive parameters denoting respectively theintrinsic growth rate, intra-specific and
(ui), = ui(rs — azu; — Zbijuj), (1)
J#i
inter-specific competition rates (i, j = 1,2,3 and i # j). Equations (1) have been intensively studied from a
mathematical analysis point of view (e.g., Zeeman(1993)). In particular, the possibility of coexistence of
all three competing species has been intensively investigated (e.g., Gyllenberg and Y an (2009)). However,
(1) isrestricted to the case where movement in space of the speciesis negligible, so that spatially segregated
coexistence cannot be discussed. For this reason, assuming the situation where each species disperses
randomly in space by diffusion, a three-species competition-diffusion system can be proposed as follows:
where d; isthe diffusion rate of u; (i = 1, 2, 3).

(“’i)t = diA'Il,i + “’i(ri — Q; Uy — Z bij“j)a (2)
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When (2) is considered on a bounded domain with zero-flux boundary conditions, sensitively depending
on the value of r3, several different kinds of patterns are observed. In particular, for values of rzin acertain
interval, complex spatio-temporal patterns appear and competitor-mediated coexistence occurs, despite the
fact that the competitive interaction term used is the simplest nonlinear choice. Moreover, the pattern type
transitions from stable regular spirals to periodic multi-spiral patterns first and then to chaotic patterns of
spiral turbulence. The objective of our study was to understand the mechanism underlying such phenomena.
Moreover, we aimed at proving rigorously that no coexistence was possible if r; was very large or very

small.

Equations (2) look like simple nonlinear PDES, but they have not been widely studied by mathematical
communities, since at the moment there are no known analytical tools to successfully study such athree-
component reaction-diffusion system. For this reason, we have recently developed a hybrid method
combining analytic and complementary numerical tools. For example, in the study of pattern formation we

have utilized numerical continuation coupled with knowledge from bifurcation theory.



The complex patterns displayed by (2) are essentially composed by large regions where the species
densities are constant. The interfaces between such regions move at various speeds, eventually colliding
with each other. The result of this collision varies with rs, giving rise to the different pattern typologies.
Since these interfaces reduce in one spatial dimension to travelling waves, we studied in detail by
numerical continuation the global bifurcation structure of such one-dimensional wavesin order to shed
light to the more interesting two-dimensional case. Under some assumptions on the parameters the three-
species competition-diffusion system admits two planarly stable travelling waves. Their interaction in one
spatial dimension may result in either reflection or merging into a single homoclinic wave, depending on
the strength of the invading species. This transition can be understood by studying the bifurcation
structure of the homoclinic wave. In particular, atime-periodic homoclinic wave (breathing wave) is born
from a Hopf bifurcation and its unstable branch acts as a separator between the reflection and merging
regimes: when a stable homoclinic wave exists, colliding waves are attracted by it resulting in merging; if
the homoclinic wave is unstable, colliding waves are repulsed and reflect.

The same transition occursin two spatial dimensions. If the waves merge in a stable homoclinic pulse
then a stable regular spiral isformed, exactly asit occurs for example in the FitzZHugh-Nagumo system.
When r3 is decreased, the stable regular spiral associated to the homoclinic wave destabilizes, giving rise
first to an oscillating breathing spiral and then breaking up producing a dynamic pattern characterized by
many spiral cores. Such patternisinitially periodic since the breakup occurs far from the spiral cores, but
asrzisdecreased it eventually leadsto a chaotic pattern where the spiral cores cannot sustain themselves
indefinitely and are continuously destroyed and generated anew. Finally, we remark that these complex
patterns are generated by the interaction of two planarly stable travelling waves, in contrast with many
other well-known cases of pattern formation where planar instability plays a central role.

Proving the appearance of coexistence rigorously appears to be quite hard at the current state of research in
the field of reaction-diffusion systems. We succeeded instead in proving that coexistenceisimpossible, i.e.,
the competitive coexistence occurs, i.e., that only one species survives in the long run. This is also not
trivial, because the competition-diffusion system does not admit a vector comparison principle for three or
more species. However, we were able to prove our results by only employing the scalar comparison
principle, applied multiple times to each single equation. In the case of a general m-species competition-
diffusion system, we showed that: (1) coexistence cannot occur if one species is much stronger than the
others (i.e., itsgrowth rater isvery large), resulting in all other species becoming extinct; (2) a species will
never be ableto surviveif itsgrowth rater is very low and the system will reduce to a (m-1)-species system
(which for m=3 meansthat no coexistence can be observed). These two results are expected and, in a sense,
trivial from the ecological point of view but have never been proven rigoroudly. Finally, we remark that we
have proven the above properties both in the singular limit case (limit behavior for r tending to zero or
infinity) and in the casesin which r is very large but finite or very small but positive (which are applicable

to real world scenarios).
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