©
2016 2018

Luminescent and electrically conductive
photovoltaics

Luminescent and electrically conductive
photovoltaics

Gelloz, Bernard

nano-silicon for optoelectronics and

nano-silicon for optoelectronics and

3,700,000
PS in-situ
PS HF
PS
61 Si/Si02 1-
PS Si-H Si-C
PS
PS
PS

A new method of determination of optical constants of Porous Si was shown.

It is easy, allows for study of perfectly preserved materials and for the first time allows the
study of all porosities. The dissolution rate of silicon in various HF-based solutions was achieved.
Photo-etching of porous Si was also characterized experimentally and theoretically with a model.
Si/Si02 core/shell nanoparticles with world record high quantum yields (53-61%) were obtained. The
same method led to quantum yields of ~ 30% for porous silicon powders. These nanocrystals were very
stable and exhibited the longest lifetimes ever reported for such nanocrystals. A new method of
gas-phase chemical modification of nano-silicon surface to replace Si-H bonds by more stable Si-C
bonds was studied using 1-hexene. This method is easy, low-cost and allows for gas pressure control.

It is much more efficient than the liquid-phase one. The resulting photoluminescence of the

nano-silicon layers was well-stabilized.
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Silicon overwhelmingly dominates microelectronics. It is aso non-toxic, bio-compatible and
low-cost. However, it is a poor light emitter in its bulk form. As a result, organic and other
inorganic materials (e.g. GaN alloys) dominate the optoelectronic world. These materials do have
limitations, such as cost, toxicity or stability issues.

Visible light emission is possible in nano-silicon due to quantum confinement (QC). Porous
nano-silicon (PSi) layers offer many advantages such as low-cost, easy processing and scaling,
tunable properties, and no need for vacuum technology or poisonous gases. However, so far, the
Iluminescence has been inefficient and not stable.

Basic and applied studies will be conducted on porous nano-silicon, nano-silicon oxide, and
powders. Important targets are the control of the nano-structures shape, size and surface chemistry,
their luminescence (emission spectrum, lifetime, efficiency and stability). These materials could be
applied to multi-color lighting, bio-imaging, sensing, and photovoltaics.

For size control by chemical and photo-chemical etching, it was necessary to understand the
phenomena involved. We succeeded by using a technique allowing the monitoring of these
phenomena and simulation/fitting models.

To enhance the luminescence efficiency of Si nanocrystals, we have used a particular oxidation
technique allowing for the formation of very good quality surface passivation layer

For efficient stabilization of Si nanocrystals by short organic molecules, we have proposed a new
method of gas-phase hydrosilylation using 1-hexene. The method is low-cost, easy to implement
and very effective.

(2) Etching of porous Si in HF, and optical characterizations.

Figure 1 shows the porosity-dependence of the absorption coefficient derived continuously for the
first time from ~ 60% porosity to 100% porosity. The absorption results were discussed considering
the Bruggeman model of effective medium approximation and other measurements from the
literature, together with the effects of quantum confinement (QC) and surface states. The study also
allows the determination of the dissolution rate of silicon in various HF-based solutions.
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Figure 1. Absorption coefficient at different wavelengths as a function of PS porosity. Solid
symbols were obtained from our method. Hollow symbols are data from the literature or our own
independent measurements (). Lines were obtained by using the Bruggeman model.



Photo-assisted etching of PSi in HF solution has been, so far, not well controlled and characterized.
We developed a method of photoetching monitoring, and a model was developed. Two regimes
were characterized, one in which the photoetch rate is limited by the supply of photo-generated
holes at the Si surface, and another one where it is limited by the rate Ry of the chemical reactions
after initial hole capture, for illumination powers greater than a threshold value. Ry was evaluated
as about 0.06 A/min. The model was used to calculate porosity profiles during photoetching.

25 ] L B L L
] 405 nm; 103 mW/cm® ,.ll"'_ ]
20 - ]
”g 15 ] 1
- 532 nm; 35 mW/cm’
E ]
~ 101 i
5- 405 nm; 15 mW/cm? ]
i eo 000000 ]
1 [ ]
1 [ ]
Ot—+—r—r "l‘""""l.'.' LANELE IR L R LR L AL L L R R B
0 50 100 150 200 250 300

TIME (min)
Figure 2. Photocurrent density under continuous photoetching at 532 nm, for a 5 um-thick PS
layer (porosity 62%). Smultaneously, the photocurrent density obtained using a lower power 405
nm laser light was measured. In a second step, only the blue laser was used, at a higher power, to
continue the photoetching.
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Figure 3: PL of SNCs powder before and after oxidation, and of PS powder after HWA. Pictures
of the powders under a 365 nm lamp are shown when the lamp was off and on.

The effect of illumination wavelengths was discussed. A signature of QC in high-porosity PSi was
observed, as shown on Fig.2. In a first step, PSi is photoetched at 532 nm until PSi becomes
transparent at 532 nm due to QC. In a second step, photoetching was continued at 405 nm, showing
PSi was not fully photoetched by 532 nm, and showing the effect of QC.



(2) Highly efficient luminescent Si nanocrystals (Figure 3).

Most of the highly efficient luminescent silicon nanocrystals (SINCs) reported to date consists of
organically capped silicon cores. Here, we report a method of obtaining Si/SiO. core/shell
nanoparticles with very high quantum yields (53-61%). The SINCs were very stable under
continuous excitation for several hours. The lifetime at 1.5 eV was over 232 ps, the longest ever
reported for SINCs, consistent with the very high luminescence efficiency. The oxidation process
we have developed allows for the growth of very good quality oxide with low defect concentration
and low stress, resulting in very good surface passivation, which explains the very high quantum
yields obtained.

(3) Stabilization of PSi surface with a new method.

A new method of gas-phase chemical modification of nano-silicon surface to replace Si-H bonds by
more stable Si-C bonds was studied using 1-hexene. This method is easy, low-cost and allows for
gas pressure control. It is much more efficient than the liquid-phase one. The resulting
photoluminescence of the nano-silicon layers was well-stabilized.
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