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Relativistic mirrors reflecting high intensity laser pulses can generate ultrashort high-intensity
short wavelength light. This has applications for imaging of ultra-short phenomena. This upshifted
laser light could be used to generate electron-positron pairs from vacuum.

Bats use ultrasound to determine their position. Because their emitters
(nose) and receivers (ears) are both moving, they experience the double Doppler effect. Einstein
predicted this can occur with light reflected from a mirror moving near light speed. Lasers
propagating in plasma have been shown to generate breaking plasma waves (relativistic mirrors) which

reflect, compress, and upshift laser light where the laser pulse reflecting off the relativistic

mirror had low intensity to not significantly perturb the mirror. We showed via numerical
simulations that even strong laser pulses can reflect off relativistic mirrors and generate much
shorter wavelength light.
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Petawatt (PW, 1015 W) lasers having 10’s of femtoseconds duration (fs, 1015 s) have been and
are being developed. When these lasers are focused to spot sizes of micron order, ultra-high
intensities ~ 1022 W/cm?2 are achieved. Multi-PW lasers will produce intensities ~ 1023 to
1024 W/em?2. At these intensities we and other groups have shown that greater than 30% of
the laser energy can be converted into y-ray photons when multi-PW lasers interact with high
energy electrons and solid targets (radiation reaction dominant regime). Since the resulting
y-rays are of the order of the laser pulse duration (10’s of fs), these sources generated from
solid targets are expected to reach ultra-high PW levels and have photon energies in the 10’s
of MeV range. However, the energy range is broad and the angular distribution is expected
to be within a relatively broad cone based on classical (~30°) and quantum mechanical
calculations (~80°). We have shown that extremely short coherent light pulses with photon
energies greater than optical levels focused to extremely small spots can be achieved from
the interaction between plasma and ultra-short laser pulses via relativistic flying mirrors
with relatively compact laser systems. The relativistic mirror is a breaking plasma wave
generated by an ultra-short high power laser propagating in plasma. A laser pulse counter-
propagating to this mirror is up-shifted in frequency and shortened in length by it. We
realized that combining reaching the radiation reaction dominated regime with an ultra-high
intensity laser pulse counter-propagating with a relativistic flying mirror that a tightly
focused y-ray beam is possible due to the naturally focusing nature of the mirror.
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Up to now the reflection from the mirror of low intensity counter-propagating optical laser
pulses has been studied. At high intensity high order harmonics are generated in the up-
shifted laser light. At ultra-high intensity the interaction can become radiation reaction
dominant where a large portion of mirror’s energy stored in electrons is converted to radiation
up to y-rays. We clarified the extent to which the up-shifted and shortened high intensity
counter-propagating laser pulses can be focused by using the naturally focusing nature of
relativistic mirrors in a variety of configurations using multi-PW lasers. We determined
how much the angular distribution can be reduced as opposed to solid targets.
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produce relativistically upshifted harmonics [#5E77m L @]. The relativistic upshift, which
depends on the phase velocity of the nonlinear plasma wave, was found to agree with
analytical estimates of Schroeder et al. [Phys. Rev. Lett. 107, 145002 (2011)]. In the
interaction the nearly relativistic intensity laser pulse is relativistically upshifted and
produces relativistically upshifted harmonics with wavelengths below 20 nm from an
originally 3 micron laser pulse approximately 160 times shorter than the original laser
wavelength [HEEERH C@] (Figure 1). When the intensity of the laser pulse is too strong, the
reflected spectra do not have clear harmonic peaks [#ZE7# L@]. Since we discovered that
relativistic harmonic generation from the high intensity pulse interaction with the
relativistic mirror occurred, we decided to concentrate on this for the project instead of the
gamma ray production as in the original plan, since such a source would be invaluable for
short wavelength coherent radiation. Two dimensional simulations have shown that strong
laser pulses can be reflected and focused by the breaking plasma waves generated by another
laser pulse. In addition, via collaborations it has been shown both theoretically and
numerically with three dimensional particle-in-cell simulations including quantum
electrodynamics effects that a high energy electron beam can generate a clean and bright
source of GeV photons with high efficiency when scattered off multiple colliding laser pulses
in a geometry of optimal focusing below PW levels [#£355% ¢ @]. Such a source could be
applied to fundamental studies in nuclear and quark-gluon physics [daERR L @].
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