科学研究費助成事業 研究成果報告書

交付決定額(研究期間全体):(直接経費) 2,800,000円

研究成果の概要(和文):セラミックス薄膜を省エネ、低材料資源、短時間プロセス(低プロセスコスト)で製造する技術は、次世代エレクトロニクに大きな寄与を果たす。本研究の高精細でアスペクト比の高い単結晶-M003ナノロッドアレイは、簡便な手段で大きなエリアに製膜し、既存のセンサデバイスを大きく上回る性能を示した。従って、本研究の手法は、製造プロセスのコスト削減と省資源を実現する有用な次世代エレクトロニクス製造手段である。

研究成果の概要(英文): Nanorod array gas sensors are attracting much scientific and engineering interest because of their excellent sensing performance arising from their unique nanostructures. In this work, large-scale random 3D networks of ultra-fine single-crystal -MoO3 nanorod arrays are applied as gas sensors. The arrays are spontaneously grown by a simple single-step solution route. A prompt response and obvious discrimination of ethanol, methanol, isopropanol and acetone vapors at 573 K are investigated via the modulation of the resistance of the gas sensors. The sensitivity, response time and recovery time of the sensors strongly depend on the specific morphologies of the nanorod arrays in the 3D network. These random 3D-network nanorod arrays with functionally tunable morphology are promising for universal application as gas sensors for detecting various vapors, and provide valuable insights for the production of fast, large-scale, low-cost and simple synthesis of sensing devices.

研究分野:材料

キーワード: 有機金属分解法 半導体ガスセンサ 酸化物薄膜

1. 研究開始当初の背景

ファインマンや久保らによって、物質のナ ノサイズ効果が提唱されて以来、半世紀以上 に渡ってナノ材料は研究・開発されてきた。 巨大比表面積による融点や焼結温度の低減、 量子サイズ効果による新機能の発現など、今 や材料科学にとってナノ材料分野は欠かせ ない存在となっている。

しかし、これらの有効な機能性がありなが ら、これまで、その性質を極限まで利用した 有用なデバイスは民生に広まっていない。そ れの理由は、1.収率が少ない。2.合成にかか るコストが膨大となる。などが指摘されるが、 一番の問題点は、ナノ材料を応用デバイスと して構築する場面で、パターニング(配列や描 画)にかかる 3.高精度な製造技術や 4.周辺材 料の浪費などのコスト面でのハードルが挙 げられる。つまり、ナノ材料のポテンシャル を的確に引き出し利用するためには、『ナノ 材料の作製からパターニングまでを如何に 簡便な方法でプロセッシングするか』にかか っている。

著者は、このような背景に着目し、簡単な 方法でナノ材料を作製し、同時にデバイスを 作製できるプロセスを開発するという着想 に至り、前駆体溶液を単純に基板へ塗布し数 分間焼結するだけで酸化物ナノ材料アレイ を作製すことに成功していた(T. Sugahara *et al.* Cryst.Growth & Des. 2015.)。

異方性酸化物ナノ粒子は、本来、水熱法や ソルボサーマル法などのバッチ式で合成さ れ、デバイス応用するために、リソグラフィ ーやエッチングなどを用いてパターニング された基板へ塗布法や自己組織化などで配 列させる。また、同様な方法で種結晶を配列 した後に異方成長させる手段も開発されて いる。しかしながら、これらの手段は、前述 の様に原材料やリソグラフィー材料を浪費 するなどデバイス作製に費やす製造コスト が膨大となる。

本研究では、ナノ材料を合成と同時に基板 へ配列するため、デバイス製造プロセスに係 る手間や費用を大幅に低減できる。そのため、 本研究の成果は、ナノ材料の民生応用に向け て、大きなアドバンテージとなる。

<u>2.研究の目的</u>

前駆体の調合やその塗布方法よって、基板 へ直接、酸化物ナノ粒子を成長させ配列する。 また、その成長の機序を的確に把握し、化学 的手法で形態制御する。さらに、その応用デ バイスを作製し評価することで、有用性を示 す。

前駆体溶液を単純に基板へ塗布し数分間 焼結するだけで酸化物ナノ材料アレイを作 製すことに成功している。この方法は、ナ ノ材料を応用するためのデバイス製造プロ セスに新たなフロンティアを提案するもの である。

本研究では、電子デバイス特性の性能向 上を評価手段として、単純な製造プロセス を用いたナノ材料のさらなるナノ構造制御 や印刷法による微細パターニングに挑戦す る。この研究成果を通じて、性能向上とと もにデバイス製造プロセスに係る手間や費 用を大幅に低減できる可能性を提案する。

近年、酸化モリブデン(MoO_x)は、多種多様な結晶構造と価電子数を有する酸化物半 導体であることから、ガスセンサだけでなく、 有機太陽電池(OPV)や有機 ELのバッファ 層として使用されている。また、その価数揺 動と結晶構造の複雑さ、および工学的実用性 の高さから、学術的基礎学理の探求も、近年 になって積極的に研究されるようになって きた。本項で取り上げる三酸化モリブデン

(MoO₃)の代表的な結晶構造は、orthorhombic の α -MoO₃ と monoclinic の β -MoO₃ で、間接遷 移型のバンド半導体 (バンドギャップ:約 3.5 eV) である。また、その価電子数と結晶構造 の多様性から構造や酸素含有量によって半 導体特性が n 型と p 型を示す材料としても知 られている。三酸化モリブデンの最も安定な α -MoO₃ 相の結晶構造を図 1 の挿入図に示す が、単位結晶構造は、各軸長が a = 3.96 Å, b = 13.86 Å, c = 3.70 Å で示されている。さら に、図 1 から分かるように a 軸方向に強固な イオン結晶性を示すが、 b、 c 軸方向には、 酸素がジグザグに配列し、ファンデルワース ルカに起因する弱い結合を有する層状構造 を有している。

図 1. 酸化モリブデン(MoO₃)ナノロッドア レイの XRD パターン。挿入図は、 α MoO₃ の結晶構造を示す。

近年では、その特異な結晶構造から、Liイ オン電池の正極材料として、注目を集めてい る。これは、層状構造の MoO₃ の層間へ Li イオンが電気化学的にインターカレーショ ンすることにより、MoO₃ 結晶構造中の巨大 な層空間に多数の Li イオンを内包させるこ とが可能であり、大きな電気容量を示すから である。

本研究では、多様な結晶構造と価電子数を 有する酸化モリブデンの多種のガスに反応 するガスセンシング特性に着目し、基板に直 接ナノ構造の MoO₃を成長させることに挑戦 した。塗布技術やそのナノ構造を制御するこ とで、ガスセンサ特性を向上させる。

3.研究の方法

MoO₃ ナノ構造薄膜は、有機金属分解法で 作製した。モリブデン酸アンモニウム (H₈N₂O₄Mo)と安定剤のクエン酸(C₆H₈O₇)を所 定の化学両論比で秤量し、それぞれの溶媒 (ethanol: EtOH, C₂H₆O; 2-methoxyethanol: 2-ME, C₃H₈O₂; dimethylformamide, DMF, C₃H₇NO; dimethyllacetamide, DMAC, C₄H₉NO) へ混合し、常温で4時間攪拌することで前駆 体インクを調整した。この前駆体インクを、 SiO₂基板に 30 μ l 滴下し、1000 rpm で 10s ス ピンコートした後、400 °C で 15 分間焼結し、 薄膜試料を得た。得られた薄膜試料は、XRD、 FE-SEM、TEM 等で製膜状態やナノ構造を分 析した。

図 2. 酸化モリブデン(MoO₃)ナノロッドア レイの電子顕微鏡像。電解放出走査型電子 顕微鏡(FE-SEM)像、それぞれ a) 試料の表 面、b) 試料の断面を示す。透過型電子顕微 鏡(TEM)像、c) ナノロッドの外観、d) 高分 解像。

MoO₃のナノ構造を作製するに至るまで、 溶媒(特に、2-ME)に対して、モリブデン酸 アンアンモニウムとクエン酸の化学量論比 (モル濃度)を徹底的に調査した。これにつ いては、参考文献 18 を参照されたいが、酸 化モリブデンナノロッドの基板への直接成 長には、モリブデン酸酸アンモニウムと溶媒 に対するクエン酸の濃度が決定的な関係に あることが示されている。 また、示唆熱重 量分析の結果から、クエン酸の分解温度とそ の時間がナノロッドの成長に寄与している ことが示唆されている。

上記の実験によって、図 2a, b に示す様な、 酸化モリブデンのナノロッドアレイを基板 に直接成長させることに成功した。図 2b か ら分かるように、このナノロッドは基板側か ら上方向にランダムに成長している。また、 基板の直上(ナノロッドの根本)には、150-200 nm ほどのシード層が形成されており、XRD 測定の結果から、このシード層は酸化モリブ デンの MoO₃のβ相である可能性が示唆され ている。図1は、図2a,bで示している MoO₃ ナノロッドアレイの in-plain からの XRD パタ ーンを示しているが、図 2d の高分解 TEM か らも分るように、このナノロッドは非常に結 晶性が高いことが明らかとなった。また、図 2から分かるように α 酸化モリブデンの(0k0) 面からの反射が強く示され、結晶配向性が高 く特定の軸や平面方向に異方成長している ことが分かる。しかしながら、高分解能 TEM 像から得られた電子線回折の解析結果では、 収束された電子線ビームによって、試料が経 時的に変化し結晶の成長方向を特定するに 至る回折スポットは得られていない。

図 3. 酸化モリブデン(MoO₃)ナノロッドア レイの断面 SEM 像。焼結時間を 1 min - 15 min と調整することで、約 20 nm - 600 nm まで長さを制御できる。(a) 3min,約 70nm, (b) 5min,約 200nm, (c) 10min, 500nm, (d) 15min,約 600nm。

また、この基板上に成長した MoO₃ ナノロ ッドは、図 3 に示す様に、幅約 10 nm で、焼 結時間を調整することにより長さを約 20-600 nm まで制御することが可能であり、 非常に高いアスペクト比を実現している。さ らに単純にナノロッドを合成するだけでな く、前述したように、この酸化モリブデンナ ノロッドの基板成長には、クエン酸の分解の タイミングが結晶成長のカギとして寄与し ている可能性が示唆された。そこで、溶媒の 沸点や粒成長に費やす焼結時間を調整する ことで、図4に示す様に、自在に長さ(や密 度)を制御すことにも成功した。¹⁸⁾このこ とから、クエン酸の分解のタイミングが、結 晶成長に影響を及ぼしてることはほぼ自明 となった。

4. 研究成果

ガスセンサ素子は、SiO2 基板上に作製した MoO₃ ナノロッドアレイの両端に銀ペースト を塗布し、150 ℃ で数十分間乾燥することで 完成する。対抗電極の距離は、約 1cm で、両 電極間に係る抵抗値変化を2端子法で観察す る。作製したガスンサ素子を、573K(300℃) に加熱した管状炉に設置した。雰囲気ガスは air で、50 ml/min で流通下、4 種類(アセトン: ACE、イソプロパノール: IPA、メタノール: MeOH、エタノール: EtOH)の揮発性有機化合 物(VOC)ガスをセンシングした。センサ特性 は、それぞれ応答(T_{Res})、回復(T_{Rec})、感度(S) で評価され、応答(速度・時間)は、対象ガス を導入し始めてから最大抵抗変化が 90%に 達するまでの時間として定義されている。逆 に、回復(速度・時間)は、対象ガスの導入を 終えてから、初期値の90%まで回復するまで の時間で定義される。また、感度は、最大抵 抗変化値の初期値との差で定義されており、 通常、パーセント(%)で表記されることが多 い。

ナノロッドアレイ合成時の溶媒を、それ ぞれ EtOH、2-ME、DMF、DMAC で作製し たナノロッドアレイから作製したセンサ素 子を用いて、VOC をエタノールとして、500 ppm 導入した際、それぞれのセンサ素子の 抵抗値変化を図 6 に示す。応答時間は、 DMAC試料で、約30秒程度でDMF、2-ME、 EtOH と若干増大する傾向にある。

図 6. エタノールを導入ガス種とその量を それぞれ変えた時のセンサ特性。アセトン、 IPA、メタノール、エタノールの順で検出 力が高い。

しかしながら、驚くべきことに、回復時間 の序列は変わらないものの、大きく2つ反応 に分類できた。つまり、DMACとDMF 試料 の回復時間は、25-30秒程度であるが、2-ME と EtOH 試料の回復時間は 5-6 倍以上長いこ とが明らかになった。これらセンサ特性の差 異を明らかにするために、4 種類の試料の表 面状態を図7に示すした表面 SEM 像から得 られる情報を用いて再検討した。つまり、ナ ノロッドの平均長さ、ナノロッドの数、ナノ ロッドが覆っている面積と(それぞれのパラ メータの積)を、応答時間、回復時間、感度 との関係でそれぞれ整理した。

図7は、各センサ特性におけるナノロッド アレイの表面パラメータとしての関数を示 している。図7a-7cから分かるように、応答 時間はナノロッドの長さに負の相関が観察 される(図7a)が、回復時間はナノロッドが覆 っている面積に負の相関が観られた(図7b)。 これは、Rathらが、半導体式ガスセンサにお いて、半導体表面にガスが吸着・脱離するメ カニズムを数学的議論によって説明できる。

その報告によれば、ガスの吸着特性は、ガ ス分子が物質表面に接触する機会のみで決 定されるが、一方でガスの脱離特性は、物質

図 7. エタノールを導入ガス種とした際の センサ特性(応答速度、回復速度、応答感度) と表面形態の関係。

図 8. 前駆体に仕様する溶媒(の沸点)を変 えて作製した酸化モリブデンナノロッドア レイの表面 SEM 像。a EtOH (351 K)、b 2-ME (297 K)、c DMF (426 K)、d DMAC (438 K)。

の表面エネルギーによって、ガス分子を切り 離す強さが異なることを議論している。

っまり、ナノ粒子など表面エネルギーが低 くなれば、ガス分子が脱離するタイミングも 早くなることが示唆される。従って、表面が 多くのナノロッド覆われているナノロッド アレイの回復速度は、非常に早くなることが 明らかとなった。最後に、感度は、ナノロッ ド長さと、数、覆っている面積の積に正の相 関が観察され、これはつまり、ナノロッドア レイの比表面積に起因していると考察でき る。しかしながら、実験的に比表面積を測定 することは困難であり、それを確かめるには 至っていない。

前述の DMAC 溶媒を用いて作製したセンサ 素子について、アセトン(ACE)、イソプロピ ルアルコール(IPA)、エタノール(EtOH)、メタ ノール(MeOH)の4種類の VOC をそれぞれ、 25、50、100、200、400、500ppmの濃度でセ ンシングしたセンサ特性の波形を示す。

図 9. 高感度(FMAC)のセンサ素子を用いて 測定した各種 VOC ガス(アセトン: ACE、イ ソプロピルアルコール: IPA、エタノール: EtOH、メタノール: MeOH)のセンサ特性の 濃度依存性。a 抵抗値変化の温度依存性。b センシング感度の濃度依存性。

図 9 は、その結果から、各濃度に対する感 度をプロットした。図 9 から分かるように、 挿入ガスの濃度が増大するにつれて、応答特 性、特に回復時間が増大する傾向にあること が分かる。また、図から分かるように、酸化 モリブデンの各種 VOC ガスに対する感度は、 それぞれ異なることが分かった。これは、 VOC ガス分子によって酸化モリブデンの表 面の吸着特性が異なるからと考察できるが、 今のところその序列の規則性に、明確な答え を得ていない。しかしながら、各 VOC ガス の濃度変化に対する感度は、線形的であり、 この濃度範囲では、良好濃度と感度の依存性 を示していると言える。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計3件)

- M. Karakawa, <u>T. Sugahara</u>, Y. Hirose, K. Suganuma, Y. Aso, An energy-efficient beneficial coating process for optical devices based on zinc hydroxide amorphous semiconductor ultra-thin film, Scientific Reports, (Accepted).
- S. Cong, A. Hadipour, <u>T. Sugahara</u>, T. Wei, J. Jiu, S. Ranjbar, Y. Hirose, M. Karakawa, S. Nagao, T. Aernouts and K. Suganuma, Modifying the valence state of molybdenum in the efficient oxide buffer layer of organic solar cells via a mild hydrogen peroxide treatment, J. Mater. Chem. C 2017, 5, 889-895 (2017).
- 3. S. Cong, <u>T. Sugahara</u>, T. Wei, J. Jiu, Y. Hirose, S. Nagao, and K. Suganuma, Diverse Adsorption/Desorption Abilities Originating from the Nanostructural Morphology of VOC Gas Sensing Devices Based on Molybdenum Trioxide Nanorod Arrays, Advanced Materials Interfaces 3, 1600252 (2016).
- 〔学会発表〕(計 10 件)
- <u>T. Sugahara</u>, S. Cong, M. Karakawa and K. Suganuma, Amorphous Oxide Semiconductor Thin Film for OPV Devices by Metal Organic Decomposition (MOD) Coating Process, EMN Greece Meeting 2018, May 14th 18th 2018, Heraklion, Greece.
- <u>T. Sugahara</u>, S. Cong, M. Karakawa and K. Suganuma, Amorphous Oxide Semiconductor Thin Film with an Energy-Efficient Beneficial Coating Process for OPV, 12th Pacific Rim Conference (PACRIM), May 21st 26th 2017, Waikoloa, Hawaii, USA.
- <u>T. Sugahara</u>, S. Cong, and K. Suganuma, Gas Sensor Property of MoO₃ Nanorod Arrays synthesized by Metal Organic Decomposition Method, K-J Ceramics 33, Nov. 16th – 19th 2016, Daejeon, Kora.
- <u>T. Sugahara</u>, Y. Hirose, N. Kagami, K. Ohata, M. Okajima, and S. Nambu and K. Suganuma, Fabrication of Flexible Thermoelectric Module and its Performance with Packaging Technique for the Applying of Curved Surface, EMN Thermoelectronics Meeting 2016, Feb 22nd-25th, 2016, Orlando, USA.
- <u>T. Sugahara</u>, Y. Hirose, M. Karakawa, K. Imamura, T. Matsuo, J. Jiu, S. Nagao, and K. Suganuma, Sol-Gel Ink Development

and Electronic Device Fabrication for Printed Electronics, EMN Summer and Energy Materials Nanotechnology, Jun 14th – 17th, 2015, Qingdao, China

- Shuren Cong, <u>T. Sugahara</u>, Jinting Jiu, Yukiko Hirose, Shijo Nagao, and Katsuaki Suganuma, Enhancement of reaction area of molybdenum trioxide nanorods via sol-gel drived method and its gas sensing property, EMN Qingdao Meeting, 14 – 17 June 2015, Qingdao, China.
- Shuren Cong, Afshin Hadipour, <u>Tohru</u> <u>Sugahara</u>, Jinting Jiu, Yukiko Hirose, Karakawa Makoto, Shijo Nagao, Katsuaki Suganuma, and Tom Aernouts, Enhancement of Efficiency of the Organic Solar Cell by Applying a Simple Solution-Processed MoOx Buffer Layer, 2016 E-MRS Spring Meeting and Exhibi, Lille, France, May 2nd to 6th.
- 8. **菅原 徹**、菅沼克昭「酸化物ナノ構造体の 生体ガスのセンサ応用」2018 年度第1回 センシング技術コンソーシアム、名古屋、 2018 年 5 月 11 日
- 9. **菅原 徹**、菅沼克昭「呼気診断に期待され る高速応答半導体式ガスセンサ」第81回 産研テクノサロン,2016 年11月11日
- Leila Alipour, Tohru Sugahara, Jun-ichi Nakamura, Hironobu Ono, Nobuyuki Harada, Katsuaki Suganuma, Growth and gas sensing properties of TiO₂ nanostructures by MOD method, 応用物理 学会 2018 年春季学術講演会、東京、2018 年 3 月 17 日(土)~3 月 20 日(火)
- 〔図書〕(計 3 件)
- **菅原 徹**、薄膜太陽電池応用に向けた有機 金属分解(MOD)法セラミ(ッ)クス成膜技 術、「セラミックス」第 53 巻 6 月号 387-390(2018).
- 3. <u>**菅原 徹**</u>、ウェアラブル呼気センサのため の半導体ナノ材料,「ヘルスケア・ウェア ラブルデバイスの開発」CMC 出版,5章 そ の他材料・技術,4節,168-177(2017).

<u>6. 研究組織</u>

(1)研究代表者
 菅原 徹 (Sugahara, Tohru)
 大阪大学・産業科学研究所・助教
 研究者番号: 20622038