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i) Paraxial solutions for curved computer-generated holograms were derived
using asymptotic analysis. The results are verified using simulated experiments and fabrication of a
real cylindrical hologram is in process. Another analytic solution based on Bessel function was

developed. The results showed faster computation and lesser memory requirements and was reported as

Jjournal publication i i i i

11) The developed solutions required hundreds of giga-pixels to be processed and hence a parallel

computing algorithm was developed on a 16-node pc cluster. The developed method could achieve

20-times improvement in computation time compared to conventional methods .

iii) A non-parallel version of the developed algorithm was re-used for digital holography imaging

application. The results were published as journal article. The developed methods will be useful for
curved holographic display developments.
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Computer generated holography is
considered as the most promising
candidate to satisfy next generation

display requirements. However, the
specifications of available display devices
do not satisfy holographic requirements
(pixel-pitch and pixel-numbers). Due to
this the view-angle is very narrow and the
display size is too small. The solution we
propose is to use a curved display instead
of a flat display panel. This allows for large
view-angle compared to flat panel, even
though the specification of the display
device is the same. For this, a curved
computer-generated hologram (cylindrical
or hemi-spherical) has to be computed first.
However, the computation methods for
curved computer-generated holograms are
still immature. Flat hologram computation
methods are well understood, and a lot of
optimized algorithms exists. We reported
numerical solutions for fast calculation of
curved holograms. Our earlier reports were
non-paraxial solutions which required
huge sampling numbers for computation
due to Nyquist sampling conditions and
large space-bandwidth. One possibility to
solve this issue is by utilizing the paraxial
solutions, which is an approximation to
non-paraxial solutions. However, such a
solution has not been reported yet. In this
project we try to develop the non-paraxial
solutions and also investigate its potential
advantages.

2. WHED AR

Paraxial solutions are approximated forms
of non-paraxial solutions. In-order to
develop paraxial solutions and understand
its potentials the following are aimed to be
achieved,

1) The theoretical derivation of
paraxial solutions and asymptotic
analysis.

ii) Develop the numerical method and

parallel computation algorithm for
fast computation of developed
solutions

iii) Test the computed hologram by
optical playback using laser.

3. WHEOE

The non-paraxial solutions are defined in a
cylindrical co-ordinate system as shown in
Figure.1l. They define wave propagation
from one cylindrical surface to another
cylindrical surface, as shown in Figure.2,
where the inner surface is the object and
the outer surface is the hologram.
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The non-paraxial solutions we developed
earlier is the starting point of this analysis.
The non-paraxial solutions can be
mathematically represented as,
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In the above equation, p(a,phi,y)
corresponds to the object and p(r,phi,y)
corresponds to the hologram data. The
numerical computation of the above
equation can be achieved using,

Hologram = FFT1[FFT(Object) x TF]

Where the transfer function (TF) is given
by,
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Where, Hn represents Hankel functions of
the first kind which corresponds to a
diverging outgoing wave representing
non-paraxial condition. Starting from the
above mentioned non-paraxial solution, the
paraxial approximated solutions can be
derived as follows. The asymptotic form of
the propagation factor Hn 1s used to
approximate the non-paraxial condition
and is given as follows,
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For ease of stationary phase
analysis, we convert the equations from
cylindrical to spherical co-ordinate system
(r, 8 , ¢ ). Now, using the above
approximation, the complete solution
becomes,
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The above equation is an integral of the



form,
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The above equation, when subjected to
stationary phase analysis the stationary
point kz has been found to be,

k, = kcosb

Using the above stationary phase
point in the complete solution, the final
computation equation becomes,
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The developed solution was verified using
simulation experiments. Young’s double
slit setup with changing the slit width was
simulated. The computed fringes show
frequency changes as expected and is
shown in Figure.3-4 respectively. This
verifies the correctness of the developed
algorithm
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Cylindrical hologram computed using the
above equation is currently in fabrication
process. Once the fabrication and testing
are completed the results will be published.

Another possible solution, that could
effectively reduce the computation method
based on 3D Fourier domain analysis was
derived

fmwzﬁ/m@mmmmwmmw

Where

h(0,v) = ™0y N ect [g]
The numerical computing of h(8,v) occupies
huge unwanted bandwidth and consumes
lot of computation time. This can be
avoided if the analytic solution of h(8, v)
can be found out. The analytic solution has
been derived using Jacobi-Anger expansion
as follows

h(6,v) = h(6, ) = rect m S[im g (a)e)

Here a=27R\/1/)2—-12 and Jn 1s the

Bessel function of first kind. Using the
analytical expression in  numerical
computation allows us to reduce the
memory occupancy and computation time
drastically. The above results are
published [2].

The numerical computing algorithm for the
above mentioned theoretical solutions is
required to be developed. Since holographic
display demands huge data processing in
the order of hundreds of giga-pixels, it was
decided to develop a parallel computing
algorithm. A 16-node PC cluster was
chosen for the computation. Each node was
equipped with one Tesla 2090 GP-GPU.
The parallel computing algorithm was
initially very slow since it consumed too
much time in data transfer between nodes.
The parallel computing algorithm was
useless unless the data transfer overhead
was taken care of. So, we decided to
develop the computation flow in such a way
that, there is no need for data transfer
between the nodes.

The need for data transfer in a parallel
computing system, for the computation of a
hologram can be understood from the
following Figure.5 and Figure.6.

Figure-6

As seen from the above figure, all
the pixels in the object plane are required
to calculate just one pixel in the hologram
plane. Thus, all the nodes in the cluster
needs access to all other nodes for object
data. This is the root cause of the slow
down and is worse when the number of
nodes increases, as shown in the figure
right (known as Amdhal’s law).

Our solution was to totally avoid the
need for data transfer between the nodes
by decomposing the computations in both
the object and hologram planes. This can
be achieved by wutilizing the shifting
property of the Fourier transform
operation as shown in Figure.7 below.
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For every decomposed object segment
(sub-object) of size N/K x N/K a
sub-hologram of size N x N is computed
using the shifting property of Fourier
transform as shown in the Figure.7. The
above operation is independent and can be
done for all the sub-objects in parallel.
Each sub-object to sub-hologram
computation is done within a single node
and hence data transfer requirement is
completely avoided. Finally, all the
computed sub-holograms from each node
are combined time sequentially to
reconstruct the complete object.

To verify the efficiency of the method,
we compared it with the conventional
method for computing hologram on a
pc-cluster. The most popular and straight
forward conventional method in practice is
the Transpose-split (TS) algorithm. The
difference in data transfer requirements
between the conventional method and
proposed method can be understood from
the Figure.8 and Figure.9 respectively.
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It can be seen that the conventional
method requires the time expensive
Transpose operations (Figure.8) and one
data collection operation at the end. While
the proposed method (Figure.9) does not
require any data communication after the
object data is decomposed. Since we
completely decompose both the object and
hologram plane, we call this method as the
decomposition method.

4. WFFERR

Since an electronic display device to test a
curved hologram is not available at the
moment, we decided to test the
decomposition method on a flat hologram.
The object data chosen for the experiments
consisted of two depth layers as shown in
the Figure.10.
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Figure-10

An optical reconstruction setup was
built where an LCOS-SLM with 1024 x 768
pixels was used to display the computed
hologram. The optical reconstructions were
captured using a camera. A seen from the
figure the optical reconstructions are in
good agreement with the object data, which
verifies the decomposition method.

To understand the significances of the
decomposition method in terms of
computation time the calculation was
performed on a 16-node pc-cluster. Each
node was equipped with one GP-GPU and
the all the nodes were connected with
Gigabit Ethernet. The Fresnel propagation
formula was used to compute the hologram
in both decomposition method (proposed)
and transpose-split method (conventional).
The results are expressed as Figure.11 and
Figure.12.
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Figure.11 corresponds to 2D decomposition
and Figure.12 represents row wise
decompositions. From the above figures it
can be seen that the proposed
decomposition method achieves 20-times
speed up in computation compared to the
conventional method. These results were
published [1].

Digital holographic imaging requires wave
propagation computation, for which the
algorithms developed in this project were
found to be suitable. The non-parallel
Fresnel propagation algorithm that was
developed in the beginning stages of this
project was reused for the digital
holographic imaging experiments. The
results of the digital holographic
experiments were published [3].

In conclusion the following
achieved as a result of this research
1) Paraxial solutions for curved

computer-generated holograms
were derived using asymptotic
analysis. The results are verified
using simulated experiments and
fabrication of a real cylindrical
hologram is in process.
ii) Another analytic solution based on
Bessel function was developed. The
results showed faster computation
and lesser memory requirements
and was reported as journal
publication [2]
The developed solutions required
hundreds of giga-pixels to be
processed and hence a parallel
computing algorithm was
developed on a 16-node pc cluster.
The developed method could
achieve 20-times improvement in

are

iii)
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computation time compared to
conventional methods [1].

iv) A non-parallel version of the
developed algorithm was re-used
for digital holography imaging
application. The results were
published as journal article [3].

The developed methods will be useful for

curved holographic display developments.
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