科学研究費補助金研究成果報告書

平成 21年6 月 5日現在

特定領域研究
2005~2008
17064002
ナノバイオ物質における形状と機能の量子デザイン
Quantum Design of Shapes and Functions in Nano- and Bio-Materials
YAMA ATSUSHI) 院工学系研究科・教授 80143361

研究成果の概要:新機能を有するナノ構造・バイオ物質の設計には量子論に基づくシミュレーション技法の確立とその実証計算が欠かせない。現実の大規模系を量子論で扱うための高速シ ミュレーション手法を開発し、世界最大規模の計算により、Siナノドットの電荷注入エネルギ ーを初めて計算した。また、金属 Ge、炭素ナノチューブ磁石、半導体強磁性、ナノチューブ 中の新物質相などの予測を行った。生体内ダイナミクスを量子論的に扱う手法を開発し、 ATP-ADP 変換反応、蛋白質内プロトン移動反応などを原子スケールで解明した。

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2005 年度	13,200,000	0	13,200,000
2006 年度	10,300,000	0	10,300,000
2007 年度	10,200,000	0	10,200,000
2008 年度	10,900,000	0	10,900,000
年度	_	_	_
総計	44,600,000	0	44,600,000

研究分野: 計算物質科学、理論物性物理学

科研費の分科・細目: 物理学・物性 I/物性 II

キーワード:

ナノマイクロ科学・ナノ材料ナノバイオサイエンス 量子論、計算科学、密度汎関数理論、ナノ構造体、炭素ナノチューブ、 表面・界面、半導体、タンパク質

1. 研究開始当初の背景

「次世代量子シミュレータ・量子デザイン 手法の開発」特定領域研究では、局所密度近 似を超えた計算手法の開発、励起状態をも含 めた手法の開発、現実問題を取り扱うための 大規模計算手法の開発、の3点に焦点を当て た。本研究課題では、上記3点の内、大規模 計算手法の開発と応用に焦点を当て研究を 開始した。またナノ・バイオ物質を、共通の 理論的および計算科学的基盤で扱うことを 目指し、量子論に立脚した第一原理計算手法 の研究を開始した。

2.研究の目的 量子論に基づく計算物理学的アプローチ により、10,000 個を超える原子群から構成さ れるナノ物質、バイオ物質の電子状態と形状 の関係を明らかにし、さらにその形状と物性 及び機能発現の機構を解明すること、さらに は得られた知見に基づき新機能を有するナ ノ構造体を提案すること、を当初の目的にす えた。その目的達成のために,(1)10,000 個 以上の原子群の量子論的記述のための高速 計算法の確立,(2)原子反応をピコ秒からサブ ナノ秒でシミュレートできるメタ・ダイナミ クス手法の確立、(3)機能発現の温度範囲を明 確にするための自由エネルギー計算手法の 確立、を行い、それにより、ナノ・バイオ物 質におけるナノ形状と機能発現の量子論を 展開することとした。

3. 研究の方法

アルゴリズムの方針策定、コード開発、実 証計算を三位一体とした、互いにフィードバ ックしあう研究活動を行った。アルゴリズム 検討、コード開発においては、次世代スーパ ーコンピュータのアーキテクチャを意識し、 計算機科学・工学分野の研究協力者との共同 を行った。実証計算においては、ポストスケ ーリング時代のシリコンテクノロジーでの 諸問題と未来のバイオテクノロジーの展開 を考慮し、半導体ナノ構造、窒化物半導体、 炭素ナノ物質、蛋白質内生化学反応を主なる ターゲットとした。

4. 研究成果

(1) 密度汎関数理論による物性解明と予測 ①実空間密度汎関数法の開発と応用

次世代スーパーコンピュータは超並列ア ーキテクチャとなることは必至である。従来 からの平面波基底を用いた計算手法におけ る主要な演算であるフーリエ変換は、その際 に通信量が莫大となり、高い実効速度が期待 できない。そこで我々は、実空間に格子を導 入し、格子上各点で波動関数、電子密度を表 現し、Kohn-Sham 方程式〔密度汎関数理論 (DFT)の基礎方程式]の解法を行う、実空 間密度汎関数法〔Real Space DFT: RSDFT〕 コードの開発と高度化を行った。アルゴリズ ムの変更等を行い、最も計算負荷の高いグラ ムシュミット直交化計算では、1000 ノード 規模の並列システム上で理論ピーク性能の 80%程度の速度を記録した。また全体での実 効速度も 20-30 %に到達している。

図1:Siナノドットの第一励起エネルギーの ドットサイズ依存性

この新しい RSDFT コードにより、Si ナノ ドット(最大直径 7.6 nm、Si 原子数 10701、 終端水素原子数 1966)の電子状態計算が行 われた。これは世界的にみて最大規模の DFT 計算である。イオン化エネルギーと電子親和 力の差から求めた第一励起エネルギー Δ scF と Kohn-Sham 準位から求めた Homo-Lumo ギャップは系統的に異なり、そのエネルギー 差はドットへの電子注入エネルギーに相当 することが判明した(図1)。

Si 薄膜での有効質量異常

半導体デバイスでのチャネルとして、最も 基本的な構造である平板形状において、その 形状を特徴付ける板の厚さ、結晶方位、並び に板に平行な面内に一様に印加した歪をパ ラメタとして、デバイス特性を特徴付ける物 理量である有効質量を計算した。あるパラメ ータ・セットに対して、バルクの有効質量と 比べて極端に大きな値が発現することが見 出された。歪が印加されていないバルクの場 合にはブリリュアンゾーン境界付近に対称 的に配置される二重極小形状の伝導帯下端 が、歪による対称性の低下並びに、薄膜化に よる閉じ込め効果によって一重極小形状に 変化することによって生じることを明らか にした。

③ 表面上 floating 状態の発見

Si および Al の表面において、表面原子列 の外側に分布し、表面上にあたかも浮遊する ような状態が存在しうる事を見出した。表面 浮遊状態(floating 状態)は表面原子列から、 2・3 Å離れた真空領域に電子分布の極大を持 つ状態であり、真空準位より低エネルギー側 に出現する束縛状態である。詳細な解析から、 この状態が表面から真空側に漏れ出した電 荷間の多体効果と電荷が誘起する引力ポテ ンシャルによるものであり、種々の物質にお いて普遍的に存在する、新たな表面状態であ る事を示した。今後の新機能発現が期待され る。

④体心正方格子構造の Si、Ge の新物性

DFT は物質構造を正確に予測できる利点 があるが、交換相関エネルギーに対する現時 点での近似では、電子励起エネルギーの定量 的計算は難しい。現在もっとも実際的な処方 箋は、DFT によって構造を定め、GW 近似(無 限次摂動理論における自己エネルギーをグ リーン関数 G と繰り込まれた相互作用 W の 積で表す近似)によって励起エネルギーを計 算するアプローチである。このアプローチに より、今日のテクノロジーの基幹材料である Si および Ge の新しい結晶相を見出した。

図 2:DFT 計算で 見出された体心 正方格子を形成 する Si と Ge の 新しい結晶相

図 2 は DFT+GW 計算によって発見された 体心正方 (body center tetragonal: bct) 格子

をもつ結晶相の原子配置である。最安定のダ イヤモンド構造に比べて原子1個あたり 0.1 eV 程度エネルギーは高いが準安定な構造で あることが見出された。注目すべきは、全て の原子は、典型的な半導体と同様に最近接原 子と4配位を形成しているにも関わらず、 bct-Si ではギャップは顕著に狭くなり、 bct-Ge ではそれが消失し半金属となること である。すなわち4配位では、sp³の軌道混 成により、tetrahedral な配置の最近接原子 は結合軌道と反結合軌道を形成し、それらの 間にはギャップが生じるというのが、固体物 理の教科書に書かれていることである。今回 の我々の結果は、たとえ4配位であって、ボ ンドの結合角度の変調により、金属が出現す ることを示している。

⑤ナノ構造キャパシターでの量子効果

電子デバイスにおいて、キャパシタンスは コンダクタンスと並んで基本的な特性量で あり、微細化の進む現在、キャパシタンスに おける量子効果の解明が急務である。円筒状 の炭素ナノチューブは、電界効果トランジス ターの究極構造であるサラウンディング・ゲ ート構造の基幹材料として期待されている。

多層炭素ナノチューブからなる円筒構造 に対するキャパシタンスを、DFTによって調 べ、ふたつの独立な量子効果を見出した。ひ とつは波動関数の浸みだしによる有効電極 間の減少に伴う、キャパシタンスの増大であ り、もうひとつは、1次元構造に特有な、電 子状態密度における Van-Hove 特異性によ る、キャパシタンスの顕著なバイアス電圧依 存性である。また三重炭素ナノチューブの最 外側と最内側に電極をつないで電荷を注入 すると、中に挟まれた炭素ナノチューブは誘 電分極し、キャパシタンスの増大が見られた。 ⑥強磁性炭素ナノチューブの予測

zigzag 型の端を持ったグラファイトリボ ンでは、端に沿って広がった電子状態に起因 する磁気モーメントが誘起される。この zigzag リボンをナノチューブ構造に埋め込 んだ構造として、8員環と5員環からなるト ポロジカル線状欠陥を持つナノチューブが 考えられる(図3)。その構造では、トポロ ジカル欠陥に沿った電子状態がフェルミ準 位直上に存在し、波数空間の原点近傍におい て平坦バンドが出現することを見出した。こ のトポロジカル欠陥の生成エネルギーは、 原子あたり 30meV 程度で極めて小さい。そ の基底状態では、チューブに磁気的な秩序が 発現し、分極したスピンはトポロジカル欠陥 近傍に局在し、さらにチューブ軸方向に強磁 性的な配向を示している事が明らかになっ た(図 3)。この磁気秩序の原因は、チューブ の1次元性と、曲率によるπバンド分散の増 加に起因している。この理論的発見は、トポ ロジカル欠陥を有するナノチューブを用い たスピン依存伝導システムの構築可能性を 示唆している。

図3:トポロジカル欠陥を持つ(a) (8,8)ナノチュー ブ、(b) (7,0)ナノチューブのスピン分布

⑦炭素ナノチューブ内の氷の新しい相 炭素ナノチューブは新しい物質相生成の ための鋳型としての機能が期待される。最近、 のX線回折実験により、炭素ナノチューブ内 中の水が室温で結晶化し、チューブ状の氷が 形成されていることが示唆された。このチュ ーブ状氷の構造を計算により決定した。可能 性として、図 4 の(a) stacked polygon、(b) helix polygon、(c) double-helix polygon 構造 を考え、最も安定な構造は stacked polygon 構造であること、その凝集エネルギーは、常 圧下最安定構造である氷 Ih の 80% 程度であ ること、炭素ナノチューブの氷内包エネルギ ーは、上記凝集エネルギーに比べて一桁以上 小さいこと、電子構造は通常の氷 Ih と定性 的に同じであること、などが明らかとなった。

図4: チューブ状氷構造。左から、(a) stacked polygon、(b) helix polygon、(c) double-helix polygon 構造。赤丸、白丸がそれぞれ酸素、水素 原子を表している。

⑧窒化物半導体中原子空孔の強磁性予測

GaN、InN、AlN などの窒化物半導体は直 接ギャップ半導体として赤外から紫外まで の波長領域をカバーする光デバイスの基幹 材料である。さらにこれら物質群は、近年ス ピントロニクス材料としても有望視されて いる。すなわち、磁性不純物原子をドープす ることによって強磁性が室温で発現してい ることが報告されている。しかし、磁性不純 物原子1個当りの磁気モーメントが異常に 大きいなど、従来の常識では理解できない現 象が報告されている。電子相関の効果を積極 的に取り入れた DFT+U (Gd の局在した 4f 電子状態での電子相関効果をオンサイト・エ ネルギーUで取り入れる方法)の手法により GdドープGaNの電子状態を計算した。する と、Gd周囲のカチオン空孔が強磁性的にス ピン偏極することが見出された。さらにカチ オン空孔のみが存在する系でも強磁性状態 が出現することが見出された。これは窒化物 半導体においては、カチオン原子と窒素原子 の原子半径が顕著に異なることにより、カチ オン空孔周囲の窒素原子は、半導体に特徴的 なヤーン・テラー歪を起こすことができず、 代わりに電子同士の量子論的相互作用によ り、スピン偏極により安定化するためである。 半導体における全く新奇な強磁性相の出現 が予測される。

(2) ショットキー障壁形成の理論

デバイスの微細化に伴い、ゲート絶縁膜は 従来のSiO2から高誘電体膜、とくにHfO2材 料に置き換わりつつある。この新しい絶縁膜 とゲート電極の間のショットキー障壁の電 極材料依存性は、従来の界面科学の常識では 説明できないことが実験的に明らかになっ てきた。このシリコン・テクノロジーの大問 題の解決には、金属・絶縁体の界面での原子 軌道のミキシングと金属の状態密度のエネ ルギー依存性の2点が重要であることを見 出した。そこから導かれる「一般化された電 荷中性点」の概念により、実験結果は見事に 説明されることがわかった。これにより電極 材料選択の指針がもたられた。

(3) 動力学による生体反応解明

蛋白質等のバイオ物質での反応中心では、 量子論で記述される化学反応が起きている。 一方、そこではダイナミクスが重要である。 量子論で記述される電子のダイナミクスは フェムト秒のオーダーである。一方、原子構 造のダイナミクスはピコ秒、ナノ秒さらには ミリ秒のスケールである。そのマルチスケー ル現象を扱うのに、密度汎関数理論に基礎を おく Car-Parrinello 分子動力学法と、位相 空間効率的サンプリング法であるメタダイ ナミクス法を結合した手法(CPMD-MeD) を開発した。

① ATP-ADP 分解反応の量子ダイナミクス 生体ダメージの回復は特有の蛋白質が担 っている。HSC70 (Heat Shock Cognate 70) はその一例であり、ATP-ADP 分解反応で得 られた自由エネルギーを利用して、蛋白質形 状が変化し、ダメージ箇所に付着して回復を 図る。CPMD-MeD により、この ATP-ADP 分解反応経路を原子スケールで解明した。周 囲の Mg、K、P、O 原子とプロトンが反応に 重要な役割を果たしていることが示され、計

算された反応の自由エネルギー障壁は実験 と良い一致を示している。

② 蛋白質でのプロトン移動機構

シトクローム酸化酵素はミトコンドリア内膜に位置し、生物の呼吸作用の最終段階で、

プロトンを膜内から膜間に輸送し、それによ ってATP合成反応を促す極めて重要な蛋白質 である。牛由来のシトクローム c 酸化酵素の 結晶構造を元に、X線回折構造をもとにして 見出されたプロトン移動経路(H-path)では、 Tyr440-Ser441間のペプチドグループが連続 的な水素結合のネットワークを妨げており、 従来のD-またはK-pathにおけるプロトン輸 送とは異なる機構が必要となっていた。 CPMD-MeDにより、Tyr440-Ser441間および Ser441-Asp442間の空間的に近接したふたつ のペプチドグループを介した多段階反応によ り、共有結合を介したプロトン輸送が可能で あることを示した。これは、水分子などの他 の因子を必要としない新しいのプロトン輸送 機構である (図5)。

図5:ペプチド結合を横切るプロトン輸送反応の 原子プロセス。緑、青、赤、白丸が、炭素、窒素、 酸素、水素原子を表している。シトクローム酸化 酵素の内膜から移動してきたプロトンは、Tyr440 の酸素原子に配位する(a)。一方ペプチド鎖の上方 に位置するプロトンはAsp51に引き抜かれ、目的 地に到達する。ペプチド鎖バリケードの下方に位 置するプロトンは隣のアミノ酸の助けを借りて上 方に移動する[(b) – (f)]。下図は反応座標に対する 自由エネルギーの変化。

5. 主な発表論文等

[雑誌論文](原著論文計47件)(原著論文の 内、主な27件を以下に記載。全ての発表 論文は査読有)

- 1) <u>K. Uchida</u> and <u>A. Oshiyama</u>, *Electronicstructure* calculations for carbonnanotube capacitor with a dielectric medium, Phys. Rev. B in press (2009).
- K. Kamiya, S. Yamamoto, <u>K. Shiraishi</u> and A. <u>Oshiyama</u>, Significant change in electronic structures of heme upon reduction by strong coulomb repulsion between Fe d electrons, J. Phys. Chem. B **113**, 6886 (2009).
- Y. Gohda and <u>A. Oshiyama</u>, Intrinsic ferromagnetism due to cation vacancies in Gd-doped GaN: First-principles calculations, Phys. Rev. B 78, 161201 (R) (2008).
- 4) Y. Fujimoto, T. Koretsune, S. Saito, T. Miyake, and <u>A. Oshiyama</u>: A new crystalline phase of four-fold coordinated silicon and gremanium, New Journal of Physics 10, 083001 (2008).
- <u>S. Okada</u>, Energetics of carbon peapods: radial deformation of nanotubes and aggre- gation of encapsulated C₆₀, Phys. Rev. B **77**, 235419 (2008).
- N. Umezawa, <u>K. Shiraishi</u>, Y. Akasaka, <u>A. Oshiyama</u> 他 8 名, Chemical controllability of charge states of nitrogen-related defects in HfOxNy: First-principles calculations", Phys. Rev. B 77, 165130 (2008).
- <u>S. Berber</u> and <u>A. Oshiyama</u>, Atomic and electronic structures of divacancy in carbon nanotubes, Phys. Rev. B77, 165405 (2008).
- J.-I. Iwata, K. Shiraishi and A. Oshiyama, Large-scale density-functional calculations on Si divacancies, Phys. Rev. B 77, 115208 (2008).
- 9) K. Takai, <u>K. Shiraishi</u> and <u>A. Oshiyama</u>, Ge vacancies at Ge/Si interfaces: stress enhanced pairing distrotion, Phys. Rev. B 77, 045308 (2008).
- 10)<u>S. Okada</u>, Energetics of nanoscale graphene ribbons: Edge geometries and electronic structures, Phys. Rev. B, **77**, 041408(R) (2008).
- 11)J. Yamauchi, Effective mass anomalies in strained Si thin films and crystals, IEEE Electron Device Letters, 29, 186 (2008).
- 12)K. Kamiya, <u>M. Boero</u>, M. Tateno, <u>K. Shiraishi</u> and <u>A. Oshiyama</u>, *Possible mechanism of proton* transfer through peptideg Groups in the H pathway of the Bovine Cytochrome c Oxidase, J. Ame. Chem. Soc. **129**, 9663 (2007).
- 13)<u>J. Yamauchi</u> and S. Matsuno, *Effective-mass* anomalies of strained Si thin films: surface and confinement effects, Jpn. J. Appl. Phys. 46, 3273 (2007).
- 14)N. Umezawa, <u>K. Shiraishi</u>, K. Torii, <u>M. Boero</u> 他6名, Role of nitrogen atoms in reduction of electron charge traps in Hf-based High-k dielectrics, IEEE Electron Device Letters 28, 363 (2007).
- 15)<u>K. Uchida, S. Okada, K. Shiraishi</u> and <u>A. Oshiyama</u>, *Quantum effects in double- walled carbon nanotubec capacitor*, Phys. Rev. B 76, 155436 (2007).
- 16)T. Kurita, <u>S. Okada</u> and <u>A. Oshiyama</u>, Energetics of ice nanotubes and their en-

capsulation in carbon nanotubes from densityfunctional theory, Phys. Rev. B75, 205424 (2007).

- 17)<u>S. Okada</u>, Energetics and electronic structures of carbon nanotubes with adatom-vacancy defects, Chem. Phys. Lett. **447**, 263 (2007).
- 18)<u>S. Okada</u>, Radial-breathing mode frequencies for nanotubes encapsulating fullerenes, Chem. Phys. Lett. **438**, 59 (2007).
- 19)<u>S. Okada</u>, K. Nakada, and T. Kawai, Orientaiton dependence of magnetic moment of carbon nanotubes with topological line defects, Appl. Phys. Lett. **90**, 103120 (2007).
- 20)<u>M. Boero</u>, Excess electron in water at different thermodynamic conditions, J. Phys. Chem. A 111, 12248 (2007).
- 21)M. Otani, <u>S. Okada</u> and <u>A. Oshiyama</u>, Formation of titanium-carbide in a nanospace of C_{78} , Chem. Phys. Lett. **438**, 274 (2007).
- 22)<u>S. Okada</u>, K. Nakada, K. Kuwabara, K. Daigoku, and T. Kawai, *Ferromagnetic spin ordering on* carbon nanotubes with topological line defects, Phys. Rev. B 74, 121412(R) (2006).
- 23)<u>K. Shiraishi</u>, 他8名, *Theoretcial studies on the physical properties of polu-Si and metal gate/HfO*₂ related high-k dielectrics interfaces, ECS Transactions, **1**, 479 (2006).
- 24)<u>K. Shiraishi</u>, 他12名, New theory of effective work functions at metal/high-k dielectric interfaces: Application to metal/high-k HfO₂ and La_2O_3 dielectric interfaces, ECS Transactions, 2, 25 (2006).
- 25)<u>S. Berber</u> and <u>A. Oshiyama</u>, Atomic and electronic structures of carbon nanotubes on Si(001) stepped surfaces", Phys. Rev. Lett. 96, 105505 (2006).
- 26)K. Kamiya, <u>M. Boero, K. Shiraishi</u> and <u>A. Oshiyama</u>, *Enol-to-keto tautomerism of peptide groups*, J. Phys. Chem. B **110**, 4443 (2006).
- 27)S. Okada, Y. Enomoto, <u>K. Shiraishi</u> and <u>A. Oshiyama</u>, New electron states that float on semiconductor and metal surface, Surf. Sci. 585, L177 (2005).
- 〔学会発表〕(招待講演件数計 38 件)(以下 では主要な招待講演 24 件を記載)
- <u>押山淳</u>, ナノ構造体の面白さ 電子論による機能探索, 第 56 会応用物理学関係連合講 演会シンポジウム(2009 年 3 月 30 日、筑波 大学)
- <u>S. Okada</u>, Energetics of Nanographite Ribbons, Okazaki Conf 2009 (February 21-23, 2009, Okazaki Conference Center, Okazaki).
- A. Oshiyama, Real-space density-functionaltheory scheme and its application to large systems, Supercomputing in Solid State Physics, (February 16-19, 2009, Kashiwa, Chiba).
- A. Oshiyama, Cation vacancies in nitride semiconductors: Possibility of intrinsic ferromagnetism, JST-DFG Workshop on Nanoelectronics, (January 21-23, 2009, Kyoto).
- 5) K. Kamiya, Y. Shigeta, <u>A. Oshiyama</u>, A novel proton transfer through peptide group in protein,

Theory and Application in Computational Chemistry (Sep 24, 2008, Shanghai).

- 6) <u>A. Oshiyama</u>, *Large-scale density-functional caculations using realspace parallelcomputation technique*, 1st Int. Conf. of The Grand Challenge to Next-Generation Integrated Nano science (June 3 - 7, 2008, Tokyo)
- <u>K. Uchida</u>: Quantum Effects of Capacitance in Nano-Scale Devices, 213th ECS (Electro-Chemical Society) Meeting, (May 18, 2008, Phoenix).
- 8) <u>M. Boero</u>, *Reactive simulations for biochemical processes: the example of cyto- chrome c oxidase*, Materials-Biology Inter- face: A Simulation Approach, Institute of Physics and Chemistry of Materials (IPCMS), Strasbourg, 7 March 2008.
- 9) <u>M. Boero</u>, ATP Synthase and cytochrome c oxidase: reactive simulations for biochemical processes, 10th Asian Workshop on First-Principles Electronic Structure Calculations, Hiroshima, 29-31 October 2007.
- 10)<u>A. Oshiyama</u>, Microscopic mechanisms of proton transfer in cytochrome c oxidase: Car-Parrinello metadynamics approach, Handai Nanoscience and Nanotechnology Int. Sympo. (Osaka, September 26-28, 2007)
- 11)<u>K. Shiraishi</u>, How can first principles calculations give large contributions to industries?, ISSP Int. Sympo. on Foundation and Application of density functional theory, Kashiwa, Japan, (Aug. 1-3, 2007).
- 12)<u>A. Oshiyama, Density-functional approach to</u> nano- and bio-Materials, ICYS(NIMS)-IC MR (UC Santa Barbara) Summer School on Nanomaterials (Tsukuba, July 23-28, 2007)
- 13)<u>A. Oshiyama</u>, Proton transfer in cytochrome c oxidase using CPMD+metadynamics, R. Car 60th Birthday Symposium (Trieste, June 21-23, 2007)
- 15) <u>押山淳</u>, Current Stage of the Density Functional Approach Toward Atom Dynamics upon electron Excitation, 日本物理学会 2007 年春季大会シンポジウム(2007 年 3 月 20 日、 鹿児島大学)
- 16)<u>A. Oshiyama</u>, Carbon nanotube and its hybrid structures, 2nd Int. Sympo. on Nano meter-Scale Quantum Physics (nanoPHYS07), (Tokyo, January 24-26, 2007)
- 17)<u>K. Shiraishi</u>, What happen at high-k dielectric interfaces?, 37th IEEE Semiconductor Interface Specialist Conference, San Diego, CA, USA, (December 7-9, 2006).
- 18)<u>K. Shiraishi</u>, *Theoretical approaches for protein function*, 5th East Asian Biophysics Symposium, Okinawa, Japan (November 12- 16, 2006).
- 19)<u>A. Oshiyama</u>, Atomic and Electronic Structures of Carbon nanotubes on Si and Metal Surfaces, 9th Asian Workshop on First-Principles Electronic-Structure Calculations (Seoul, November 6, 2006).
- 20)<u>K. Shiraishi</u>, Physics of interfaces between gate electrodes and high-k dielectrics", 8th Int. Conf.

on Solid-State and Integrated-Circuit Technology, Shanghai, China (Oct. 23-26, 2006).

- 21)<u>M. Boero</u>, Hybrid reactive CPMD based QM/MM simulations of biomolecules. 1st CMM QM/MM Workshop, Philadelphia (USA). 23-26 September 2006.
- 22)<u>K. Shiraishi, Theoretical approaches towards elucidation of the cytochrome c oxidase reaction mechanism</u>, Int. Workshop on Reaction Mechanisms of Energy Transdu- cing Metalloenzymes, Hyogo, (June 17, 2006).
- 23)<u>A. Oshiyama, Prediction of atomic and electronic structures of hybrid materials with carbon nanotubes</u>, Int Workshop on Computational Challenges and Tools for Nanotubes (Nagano, June 18, 2006)
- 24) <u>押山淳</u>, ナノ・バイオ物質での密度汎関数法 計算:現象の微視的機構と予測, ナノ学会第 4回大会 (2006 年 5 月 20 日, 京都大学)
- [その他] (受賞)
- 1) 藤本義隆ほか: 上記発表論文リスト 4 番が New Journal of Physics Best of 2008 に選出
- 2) <u>岡田晋</u>,日本物理学会若手奨励賞(日本物 理学会、2008年9月21日)
- 3) <u>白石賢二</u>,応用物理学会欧文誌論文賞 2007年9月
- 6. 研究組織
- (1)研究代表者

押山 淳 (OSHIYAMA ATSUSHI)
東京大学・大学院工学系研究科・教授
研究者番号: 80143361
(2)研究分担者
白石 賢二 (SHIRAISHI KENJI)
筑波大学・大学院型物質科学研究科・教授
研究者番号: 20334039

山内 淳 (YAMAUCHI JUN)
 慶應義塾大学・理工学部・専任講師
 研究者番号: 90383984
 (以下 2005 年度~2006 年度)
 バーバー サヴァッシュ (BERBER SAVAS)
 筑波大学・大学読述理約資料学研究科・助手

研究者番号: 90375402

(3)連携研究者

内田 和之(UCHIDA KAZUYUKI)
東京大学・大学院工学系研究科・助教研究者番号: 80143361
(以下は、2005年度~2007年度は研究分担者)
ボエロ マウロ(BOERO MAURO)
Louis Pasteur大学(France)・教授研究者番号: 40361315
岡田 晋(OKADA SUSUMU)
筑波大学・大学激理動資料学研究科・准教授研究者番号: 70302388
岩田 潤一(IWATA JUNICHI)
筑波大学・計算料学研究センター・研究員研究者番号: 70400695