科学研究費助成事業

令和 2 年 5 月 2 8 日現在

研究成果報告書

機関番号: 14401 研究種目: 基盤研究(A)(一般) 研究期間: 2017~2019 課題番号: 17H01064 研究課題名(和文)極低損失フォトニック結晶の1 THz帯への展開

研究課題名(英文)Development of ultralow loss photonic crystals at 1-THz band

研究代表者

冨士田 誠之(Fujita, Masayuki)

大阪大学・基礎工学研究科・准教授

研究者番号:40432364

交付決定額(研究期間全体):(直接経費) 34,100,000 円

研究成果の概要(和文):一般に高周波回路では金属が用いられるが,その伝搬損失は,周波数が高くなるほど 顕著になる、本研究では,金属を用いない誘電体の微細周期構造であるフォトニック結晶に着目し,1 THz帯回 路の基盤技術の開拓を行った、シリコンを用いた1 THz帯フォトニック結晶回路によって,従来技術としては低 損失である中空金属導波管と比較して,一桁以上小さな0.1 dB/cmという伝搬損失が得られた.1 Gbit/sのデー 夕伝送実験にも成功し,1 THz帯におけるフォトニック結晶の有用性を示した.

研究成果の学術的意義や社会的意義

11 TH2帯は、エレクトロニクスにおける高周波極限に相当する.その物理限界の一つである金属による損失を光 に関する科学技術であるフォトニクス分野のアイディアであるフォトニック結晶によって克服できることを示し たことは学術的に意義深い.0.1 THzから10 THzの周波数の電磁波であるテラヘルツ波を用いた通信・センシン グ応用が期待されており、特にデバイス・回路の開発が困難な1 THz帯の応用可能性を示したことは、新たな周 波数帯の電磁波の利活用につながるため、社会的な意義が大きい.

研究成果の概要(英文): The 1-THz frequency band corresponds to the upper limit of electronics operating speeds. One of the most critical issues in the 1-THz band is the large losses in conventional metal electronic circuits. In this study, 1-THz-band circuits based on metal-free silicon photonic crystals, which are dielectric microstructures with a periodic refractive index that is distributed on a scale comparable to the wavelength, were developed. The propagation losses are as low as 0.1 dB/cm at 1-THz band, which is one order of magnitude smaller than that of present metallic hollow waveguides. Error-free data transmission at a data rate of 1 Gbit/s using a developed waveguide is demonstrated, showing the promise of photonic crystals in the 1-THz band.

研究分野:光エレクトロニクス

キーワード: テラヘルツ フォトニック結晶 1 THz 回路 導波路 高周波 集積 シリコン

科研費

様 式 C-19、F-19-1、Z-19(共通)1.研究開始当初の背景

電波と光波の境界領域の周波数(0.1-10 THz)を有するテラヘルツ波は、未だ人類に有効利用されていない未開の電磁波である.テラヘルツ波は、その発生・検出が困難であったため、ごく最近までは未開の電磁波であった.しかしながら、通信・分光といったシステム応用につながる研究が 0.3 THz 帯を中心に最近進展しており、情報・通信分野における最重要課題の一つである.しかし、現状のテラヘルツ波システムは主に中空導波管や誘電体レンズなどの個別部品を定盤上に並べることで基礎実験がなされている段階であり、システムとして大幅な小型化を図るには、テラヘルツ波の導波、合波、分波、捕獲、入出力といったような機能が集積化されたテラヘルツ平面回路デバイスの実現が不可欠である.

フォトニック結晶は、光の波長に近い大きさの周期を有する誘電体微細構造であり、光の自在 な操作を可能にする人工材料として、注目を集めている.光波領域におけるフォトニック結晶研 究の進展は著しく、微小光共振器や光導波路などの光デバイスとその集積化が可能になってき ている.ここで、研究代表者らは、テラヘルツ波も光波と同じ電磁波のため、フォトニック結晶 で操作可能になると考え、2011年から、テラヘルツフォトニック結晶の研究に着手した.まず は、テラヘルツ波のシステム応用の進展が著しい 0.3 THz 帯に焦点を絞り、伝搬損失が 0.04 dB/cm と既存の金属伝送線路と比べ、2 桁以上小さい極低損失の導波路と波長サイズの微小合 分波器を実現し、送受信機能を集積したデバイスの作製に成功している.

ここで,0.3 THz 帯よりも周波数の高い1 THz 帯は,極めて広い帯域を利用した無線通信応 用や特異なスペクトルを利用したセンシング応用等が期待できるため,0.3 THz 帯で推進してき た極低損失フォトニック結晶回路に関する研究を1 THz 帯へと展開していくという本研究の着 想に至った.

2. 研究の目的

フォトニック結晶による極低損失テラヘルツ回路という,研究代表者らがこれまでに 0.3 THz 帯において,世界に先駆けて実現してきた基盤技術をエレクトロニクスの高周波極限に相当す る 1 THz 帯へと展開し,通信等への応用の可能性を切り拓くことを目的とした.

3. 研究の方法

まず,1THz帯のフォトニック結晶導波路に関して,0.3 THz帯で実現されている導波路を 参考に設計を進めた.作製する導波路を実験的に評価するため,1THz帯を含む周波数を測定可 能な分光系を構築した.構築した分光系で導波路を評価するための入出力インターフェースを 開発した後,動作検証のための試料を作製し,構築した分光系でその透過特性を測定し,伝搬損 失を評価した.そして,開発した導波路を利用した通信実験を行い,高速通信応用の可能性を示 した.

4. 研究成果

1 THz 帯のフォトニック結晶の基本構造として,厚さおよそ 70 μm の高抵抗シリコン基板 (シ リコンスラブ)に周期的な円孔三角格子を形成した構造を採用した.フォトニック結晶の周期を 直線状に孔を埋めること形成した線欠陥部分が導波路として働く.テラヘルツ波は,スラブ上下 方向はシリコン・空気界面の全反射現象で,スラブ面内はフォトニック結晶固有の効果であるフ ォトニックバンドギャップで閉じ込められ,導波路を伝搬する.ここで,フォトニックバンドギ ャップ効果を十分に得るため,導波路に直交する方向のフォトニック結晶の周期数を片側 28 周 期とした.フォトニック結晶の動作周波数は,その周期の大きさに反比例するので,0.3 THz 帯 での設計(周期 a = 240 μm)を参考に, a = 76 μm,84 μm,92 μm の 3 種類の設計を行った.その 設計を元にマイクロマシンの作製プロセスを利用して,フォトニック結晶の加工を行った.作製 結果を図 1 に示す.均一な孔が形成されている様子がわかる.ここで,導波路の終端には後ほど 詳細を述べる分光系との効率的な入出力を実現するテーパ状のインターフェースを形成した. 断熱的な屈折率変化を有するテーパ状のインターフェースによって,導波路に強く閉じ込めら れたテラヘルツ波が無反射の状況で高効率に出力される.この過程は可逆的なため,外部からの 効率的な入力も可能である.

図1作製したフォトニック結晶導波路.

このように作製した試料を図2に示すテラヘルツ分光系で評価した.この分光系では,信号発 生器で発生させた電磁波を27 逓倍することで 0.8 THz から 1.1 THz までのテラヘルツ連続波 を発生させることが可能であり,WR-1 規格の中空金属導波管から出力される.導波管の開口の 大きさは254 µm×127 µm であり,前述のテーパインターフェースをマイクロメータを用いて 導波管へ挿入することで,テラヘルツ波をフォトニック結晶導波路へ入力した.フォトニック結 晶導波路を伝搬したテラヘルツ波は別のWR-1 導波管へ出力され,ミキサによってダウンコン バートされた後,スペクトラムアナライザで周波数と出力の関係(透過スペクトル)を測定した.

図2構築したテラヘルツ分光系のブロック図.

図3に測定された透過スペクトルを示す.これらの試料の導波路長は1cm である.周期 a が 小さくなるほど,伝搬帯域が高周波にシフトしている様子がわかる.周期 a = 76 µm のとき,目 標とした1THz帯の導波路が実現できていることがわかった.

図3透過スペクトル.

長さ1cm, 2cm, 3cm の導波路の透過スペクトルから、単位長さ当たりの伝搬損失を見積もった結果を図 4 に示す.実験結果と電磁界シミュレーションによる理論値はおおむね一致し、0.99 THz から 1.03 THz において、約 0.1 dB/cm という伝搬損失が得られた.別途、長さ1インチの中空金属導波管の伝搬損失を見積もったところ、約 3 dB であった.すなわち、フォトニック結晶導波路の伝搬損失は、導波管と比較して、一桁以上小さいといえる.

周期 a = 76 μm, 長さ 2 cm の導波路を用いて,通信実験を行った.本実験に関わるブロック 図を図 5 に示す.こちらは図 2 の分光系の信号発生器とスペクトラムアナライザを通信実験用 に入れ替えたシステムである.テラヘルツ波として,ミリ波帯のミキサを用いることで信号発生 器の信号をパルスパターン発生器で発生した 1 Gbit/s の疑似ランダム信号で変調し,受信器と しては,ショットキーバリアダイオードを用いた.ショットキーバリアダイオードで検波された 信号は,利得 50 dB,帯域 1 GHz の低雑音増幅器で増幅後,リミットアンプで波形整形し,オ シロスコープで通信アイパターン,誤り検出器でビット誤り率を評価した.その際の送信器の出 力は約 5 μW であった.

図 6 に通信アイパターンを示す.無バイアス条件でショットキーバリアダイオードを使用した場合(同図(a)).アイパターン中には雑音が見られ,ビット誤り率は4.7×10⁻⁴であった.これは,送信器の出力および,受信器の感度が制限され,十分な信号雑音比が得られないためである.一方,ショットキーバリアダイオードに74 mVのバイアス電圧を印加した場合(同図(b)),検波感度が3倍程度増大し,その結果,アイパターン中の雑音が消え,ビット誤り率も実用上エラーフリーといえる10⁻¹¹以下となった.このように,フォトニック結晶導波路の低損失性を反映し,1 THz 帯における通信実験に初めて成功した.

図 6 通信アイパターン. (a)検出器無バイアス. (b)検出器バイアス有.

以上の結果は、エレクトロニクスの高周波極限といえる1 THz 帯における極低損失なフォト ニック結晶の有用性を示している.

5.主な発表論文等

[雑誌論文] 計11件(うち査読付論文 11件/うち国際共著 3件/うちオープンアクセス 6件)

1.者者名 Daniel Headland, Xiongbin Yu, Masayuki Fujita, Tadao Nagatsuma	4. 查 6
2. 論文標題	5.発行年
Near-field out-of-plane coupling between terahertz photonic crystal waveguides	2019年
3.雑誌名	6.最初と最後の頁
Optica	1002 ~ 1002
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1364/OPTICA.6.001002	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-

1.著者名	4. 巻
Xiongbin Yu, Jae-Young Kim, Masayuki Fujita, Tadao Nagatsuma	27
2 . 論文標題 Efficient mode converter to deep-subwavelength region with photonic-crystal waveguide platform for terabertz applications	5 . 発行年 2019年
3.雑誌名	6 . 最初と最後の頁
Optics Express	28707~28707
掲載論文のD01(デジタルオブジェクト識別子)	査読の有無
10.1364/0E.27.028707	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	

1.著者名	4.巻
Daniel Headland, Masayuki Fujita, Nagatsuma Tadao	28
2.論文標題	5 . 発行年
Half-Maxwell fisheye lens with photonic crystal waveguide for the integration of terahertz	2020年
optics	
3. 雑誌名	6.最初と最後の頁
Optics Express	2366 ~ 2366
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1364/0E.381809	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-

1.著者名	4.巻
Daniel Headland, Masayuki Fujita, Tadao Nagatsuma	26
2.論文標題	5 . 発行年
Bragg-Mirror Suppression for Enhanced Bandwidth in Terahertz Photonic Crystal Waveguides	2020年
3. 雑誌名	6.最初と最後の頁
IEEE Journal of Selected Topics in Quantum Electronics	1~9
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1109/JSTQE.2019.2932025	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4.巻
Withawat Withayachumnankul, Masayuki Fujita, Tadao Nagatsuma	6
2 . 論文標題	5 . 発行年
Integrated silicon photonic crystals toward terahertz communications	2018年
3.雑誌名	6 . 最初と最後の頁
Advanced Optical Materials	1800401 ~ 1800401
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1002/adom.201800401	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	該当する
1.著者名	4.巻
Daniel Headland, Withawat Withayachumnankul, Ryoumei Yamada, Masayuki Fujita, Tadao Nagatsuma	3
2 . 論文標題	5 . 発行年
Terahertz multi-beam antenna using photonic crystal waveguide and Luneburg lens	2018年
3.雑誌名	6 . 最初と最後の頁
APL Photonics	126105~126105
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1063/1.5060631	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	該当する
1.著者名	4 . 巻
Xiongbin Yu, Masaki Sugeta, Yuichiro Yamagami, Masayuki Fujita, Tadao Nagatsuma	12
2 . 論文標題 Simultaneous low-loss and low-dispersion in a photonic-crystal waveguide for terahertz communications	5 . 発行年 2019年
3 . 雑誌名	6.最初と最後の頁
Applied Physics Express	012005~012005
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.7567/1882-0786/aaf4b3	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	
1 3240	4 *
I. 者看名 Withawat Withayachumnankul, Ryoumei Yamada, Christophe Fumeaux, Masayuki Fujita, Tadao Nagatsuma	4. 登 25
2 . 論又標題	5 . 発行年
All-dielectric integration of dielectric resonator antenna and photonic crystal waveguide	2017年
3.雑誌名	6 . 最初と最後の頁
Optics Express	14706~14706
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1364/0E.25.014706	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	該当する

1	A 类
	4.2
Fujita Masayuki	2017
2.論文標題	5 . 発行年
Terahertz systems based on resonant tunneling diodes and photonic crystals	2017年
3. 雑誌名	6.最初と最後の頁
IPC Proceedings	547
	•
掲載論文のD01(デジタルオブジェクト識別子)	査読の有無
10 1109/IPCon 2017 8116217	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4.巻
Yusuke Kujime, Masayuki Fujita, Tadao Nagatsuma	2017
2 . 論文標題	5 . 発行年
Large capacity terahertz tag using photonic crystal slabs	2017年
3.雑誌名	6 . 最初と最後の頁
MWP Proceedings	-
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1109/MWP.2017.8168705	有
オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	国際共著

1.著者名	4.巻
富士田 誠之	45
2.論文標題	5 . 発行年
テラヘルツ帯フォトニック結晶とそのデバイス応用	2017年
3.雑誌名	6.最初と最後の頁
レーザー研究	752 ~ 756
掲載論文のD01(デジタルオプジェクト識別子)	査読の有無
なし	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-
	4

〔学会発表〕 計18件(うち招待講演 10件/うち国際学会 14件)

1.発表者名 Masayuki Fujita

2.発表標題

Photonic Crystal Waveguide Technologies for Terahertz Applications

3 . 学会等名

The 10th International Conference on Metamaterials, Photonic Crystals and Plasmonics(招待講演)(国際学会)

4.発表年 2019年

1

富士田 誠之

2.発表標題

共鳴トンネルダイオードとフォトニック結晶の融合とテラヘルツシステム応用

3 . 学会等名

電子情報通信学会 テラヘルツ応用システム研究会(招待講演)

4.発表年 2019年

1.発表者名

Daniel Headland, Withawat Withayachumnankul, Masayuki Fujita and Tadao Nagatsuma

2.発表標題

Integrated Luneburg and maxwell fisheye lenses for the terahertz range

3 . 学会等名

2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves(国際学会)

4.発表年 2019年

1.発表者名

菅田 雅樹, 西上 直毅, 大城 敦司, 冨士田 誠之, 永妻 忠夫

2.発表標題

900 GHz帯を利用したギガビットテラヘルツ無線通信

3 . 学会等名

2019年電子情報通信学会ソサイエティ大会

4.発表年 2019年

1.発表者名 Masayuki Fujita

2.発表標題

Silicon photonic crystals for terahertz sensing applications

3 . 学会等名

4th International Conference on Photonics Solution (招待講演) (国際学会)

4 . 発表年 2019年

Masayuki Fujita

2.発表標題

Photonic crystal devices for terahertz integrated circuits

3 . 学会等名

The 9th International Symposium on Photonics and Electronics Convergence(招待講演)(国際学会)

4 . 発表年

2019年

1 . 発表者名

Daniel Headland, Withawat Withayachumnankul, Masayuki Fujita, and Tadao Nagatsuma

2 . 発表標題

Integrated antennas for terahertz photonic crystal waveguides

3 . 学会等名

The 42nd Photonlcs & Electromagnetics Research Symposium(招待講演)(国際学会)

4.発表年 2019年

1.発表者名

Masayuki Fujita

2.発表標題

Advanced terahertz devices based on photonic crystals enabled by MEMS fabrication technology

3 . 学会等名

The 13th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems(招待講演)(国際学会)

4 . 発表年

2018年

1. 発表者名 Masayuki Fujita

Masayuki Fujita

2.発表標題

Photonic crystal slab for terahertz applications

3 . 学会等名

The 40th Progress in Electromagnetics Research Symposium(招待講演)(国際学会)

4 . 発表年 2018年

Daniel Headland, Ryomei Yamada, Withawat Withayachyumnankul, Masayuki Fujita, Tadao Nagatsuma

2.発表標題

Terahertz Luneburg lens antenna with photonic crystal waveguide

3 . 学会等名

The 40th Progress in Electromagnetics Research Symposium (国際学会)

4.発表年 2018年

 1.発表者名 兪 熊斌, 菅田 雅樹, 山神 雄一郎, 冨士田 誠之, 永妻 忠夫

2.発表標題

低損失低分散フォトニック結晶導波路による超高速テラヘルツ通信

3.学会等名第79回応用物理学会秋季学術講演会

4.発表年 2018年

1.発表者名

菅田雅樹, 冨士田誠之, 永妻忠夫

2.発表標題

1 THz帯フォトニック結晶導波路の設計と評価

3.学会等名
第79回応用物理学会秋季学術講演会

4.発表年 2018年

1.発表者名

Withawat Withayachumnankul, Ryoumei Yamada, Masayuki Fujita, Tadao Nagatsuma

2.発表標題

Evolution of rod antennas for integrated terahertz photonics

3 . 学会等名

43rd International Confernece on Infrared, Millimeter and Teraertz waves(招待講演)(国際学会)

4 . 発表年 2018年

Withawat Withayachumnankul, Daniel Headland, Masayuki Fujita, and Tadao Nagatsuma

2.発表標題

All-dielectric antennas for terahetz waves

3 . 学会等名

6th Australian Symposium on Antennas(国際学会)

4.発表年 2019年

1.発表者名

Daniel Headland, Xiongbin Yu, Masayuki Fujita, and Tadao Nagatsuma

2.発表標題

Near-field vertical coupling between terahertz photonic crystal waveguides

3 . 学会等名

The 2019 URSI Asia–Pacific Radio Science Conference(国際学会)

4.発表年 2019年

1.発表者名

Masayuki Fujita

2 . 発表標題

Terahertz systems based on resonant tunneling diodes and photonic crystals

3 . 学会等名

IEEE Photonics Conference 2017(招待講演)(国際学会)

4.発表年 2017年

1.発表者名

Yusuke Kujime, Masayuki Fujita, Tadao Nagatsuma

2.発表標題

Large capacity terahertz tag using photonic crystal slabs

3 . 学会等名

2017 International Topical Meeting on Microwave Photonics(国際学会)

4 . 発表年 2017年

Withawat Withayachumnankul, Ryoumei Yamada, Christophe Fumeaux, Masayuki Fujita, Tadao Nagatsuma

2.発表標題

Highly efficient terahertz antennas fed by photonic crystal waveguides

3 . 学会等名

The 4th International Symposium on Microwave/Terahertz Science and Applications & 8th International Symposium on Teraertz Nanoscience(招待講演)(国際学会)

4.発表年 2017年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

_

6.研究組織

(ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
---	--------------------	-----------------------	----