©
2017 2022

Tagless-final DSL embedding: how to keep extending the language and be sure it
will still work

Tagless-final DSL embedding: how to keep extending the language and be sure it
will still work

KISELYOV, Oleg

3,500,000

tagless-final DSL()
DSL ;
tagless-final

Tagless-final was used in the conduct of Personalized Genomic Cancer Vaccine clinical trial
NCT02721043, Mount Sinai - Hammer Lab, 2016-2019. Tagless-final has been used in several companies
and large-scale research projects, and mentioned in job ads. I had no involvement with these
applications.

Tagless-final approach is a method for embedding domain-specific languages
(DSLs) in a programming language. It addresses the principal challenge: implementing embedded DSLs
that are (1) efficient; (2) easily extensible for new domain knowledge; (3) statically assured to "
do no wrong” no matter how they are modified. Proposed in the author™s prior research, the present
research has developed the approach to a practical extent: a wide variety of DSLs, from database
query and highest-performance stream processing to natural language grammar and semantics. The
results are taught at summer schools, presented at scientific meetings, published in journal
articles and a monograph. The approach underlies the new undergraduate class “Compilers® that | have
developed and taught. The tagless-final approach has been seemingly successfully used in other
academic and commercial projects, and explained in several books and taught in many tutorials, by
people with no affiliation with me.

DSL Domain-specific language tagless-final denotational semantics algebra

Domain-specific languages (DSLs) help us deal with the increasingly more complex and
pervasive software systems by giving notation, analysis, verification, optimization and
tooling specialized to an application domain. Examples include: scientific computing, e.g.,
Firedrake for solving partial differential equations using finite element method (used by
Rolls-Royce for the simulation of turbomachinery components of jet engines); Halide to
generate sharpening, blurring etc. filters for Adobe photoshop and smartphone camera
software; the highly-configurable operating system MirageOS. DSLs are pervasive in the
financial industry.

This research concerns a large, practically-significant class of DSLs: agile, easily extensible
and embedded in a host language. An example is DSLs for representing (database) relations
in a programming language. The domain, of relational algebra, is fixed. Yet we frequently
need to extend the language, for a different data store (in-memory data, SNS feed, etc.) or to
let the users tell some features of data or query that may help improve the performance.
Expressing domain-specific knowledge is a driving force for extensibility.

The agility — adding features and adjusting the implementation — brings in the danger of
inadvertently breaking something in the process. It is often mentioned that many bugs, in
prose or programs, occur during editing. A common way to assure a degree of correctness and
guard against silly mistakes is types. Static typing is especially important for DSLs used by
non-professional programmers. Since agile DSLs are meant to be frequently extended and
adjusted, we want to statically (before running) assure that their implementation “does no

wrong”: it is consistent with DSL types at all times, no matter how we modify it. Since many
DSL adjustments take the form of program transformations, we want them to preserve DSL
types (and hence be typed themselves). Easily and assuredly implementing static analyses
(of which typing is one) was stated as the main challenge at the Dagstuhl seminar on DSL.

To fulfill the desiderata, we have proposed a so-called tagless-final approach for embedding
of typed DSLs in a typed programming language. Since only well-typed DSL terms are
representable, the well-typedness of DSL expressions is assured by construction. The
approach hence represents not only the syntax and the denotational semantics of a DSL but
also its type system, making it easy to ascertain the soundness of the latter. The approach is
extensible: a

DSL expression, once written, can be interpreted in a variety of ways (to evaluate, to pretty-
print, to transform and compile), with more interpreters can be added at any time. Not only
the set of interpreters is extensible; the DSL itself is extensible, too, with new language forms,
constants and operations. As we enrich the syntax of the DSL, we still reuse the old
interpreters as they are. We have used the approach to implement several extensible DSLs
in the domain of language-integrated query, probabilistic programming, delimited
continuations, hardware description languages, generation of specialized numerical kernels
and natural language semantics. For some implementations, performance mattered. A DSL
expression had to be analyzed and converted to the form which can be efficiently evaluated.
These optimization passes are, by construction, scope-safe and type-preserving.

We solve a principal challenge of domain-specific languages (DSL): implementing embedded
DSLs that are (1) efficient; (2) easily extensible for new domain knowledge by domain experts;
(3) statically assured to "do no wrong" no matter how they are modified. All three
requirements are satisfied simultaneously. In prior research we have developed a tagless-
final DSL embedding that had shown great promise to meet the challenge, on a few simple
examples.

Yet the generality of the approach is not yet clear. We have not yet tried complex, global
optimizations. We have not yet tried embedding languages with complex type systems, such
as those in natural language semantics (type-logical grammars) or program verification.
Some even doubt if the typed final approach is capable of doing these tasks.

This research is to develop the potential, extending the tagless-final approach to address the
open challenges:
- performing global transformations used in optimizing compilers, but in a type- and
scope- safe way;
- embedding DSLs with complex, resource-sensitive (substructural) type systems.

To answer the challenges, we chose to tackle three practically useful extensible
embedded DSL: for generating highest-performance numeric kernels, probabilistic
programming for graphical models, and for prototyping (substructural) type calculi.
The DSLs are deliberately chosen from very distinct domains.

- Embedded linear algebra DSL for specifying compositions of BLAS Level 3
operations in a Matlab-like way and generating the corresponding highest-
performing numerical kernels. At first we target conventional superscalar
processors; in further research, we add more backends (GPGPU, supercomputers,
FPGA). The language may be considered a clone of Spiral’ s SPL, but with types,
embedded rather than standalone, and extensible. The implementation certainly
needs complex global optimizations.

- Probabilistic programming for graphical models

- Embedded DSL for specifying typed calculi, used in prototyping of functional
languages and their type systems and in theoretical linguistics. The language
is similar to the Logical Framework (LF) but again, embedded rather than
standalone. The language should be capable of expressing Type Logical Grammars
and resource-sensitive calculi (such as the full linear logic and its
variations).

Not only these three DSLs serve as proof of concept of the proposed framework, they
should be useful on their own (and their further development is subject of further
research, of the author and the collaborators). Since these DSLs are embedded, they
require less maintenance and hopefully enjoy longer life than the standalone DSLs (no
longer maintained) by which they are inspired.

All planned DSLs have been implemented, with the results presented at scientific
meetings and published in proceedings and journals. The DSLs are used in education: in
the course on compilers that I have been developing at Tohoku University; in the course
on probabilistic

programming (2016 Formosan Summer School on Logic, Language, and Computation, Taipei,
Taiwan); at the summer school on meta-programming (Dagstuhl, 2019).

In addition, while working on the problem of performing global optimizations on DSLs
embedded in the tagless-final style, 1 have developed the approach of using
normalization-by-evaluation - rather than term re-writing - to transform a program to
the normal form. The approach has proved successful. First, |1 was able to reproduce,
in a much simpler way, the previous work in optimizing language-integrated database
queries and compiling them to SQL. Mainly, the approach was readily extended to queries
that involved ordering and subranging operations. For the first time we have proposed
the compositional semantics of these query operations. The developed language-
integrated query system is the first that supports ordering and subranging in a portable
and consistent way. The results have been published.

The tagless-final approach and the normalization-by-evaluation has been the foundation
for Strymonas - the highest performance single-thread stream processing library - whose
version 2.0 was released in 2022. We have demonstrated that using the same DSL we can
generate OCaml, Scala and even C code.

I have also worked on the reasoning about tagless-final DSLs. | have investigated
abstract interpretation, and denotational semantics of DSL programs with computational
effects such as mutation and non-determinism, whose results are published in two
journal papers (EPTCS 285, 2018) and (EPTCS 294, 2019).

I have used the tagless-final approach in writing code to check and assist in
theoretical work in lambda-calculus, whose results are published as a journal paper
(J. Functional Programming, v30, 2020, e7). The tagless-final approach was instrumental
for prototyping and constructive proofs of correctness in solving a long-standing
problem in heterogeneous metaprogramming: general offshoring with mutable variables.

I, together with a master student, accomplished the second main project goal: using
tagless-final to embed Logical-framework-like DSL for specifying typed calculi, for
prototyping of functional languages and their type systems and, in particular, natural
language semantic theories. We have implemented a DSL for describing derivations in AB
grammars, Lambek grammars, and Kubota and Levin®s Hybrid Type-Logical grammars. Not
only do we mechanically check that derivations are well-formed, but we also format
them as LaTeX figures according to the common theoretical-linguistic conventions.

The above research has lead to an unexpected result in the field of Formal Grammar: an
algebraic presentation of Lambek Grammars and the demonstration that under a natural
restriction (satisfied in natural languages), Lambek grammars are strongly equivalent
to context-free grammars, strengthening the existing solutions to this long-standing
problem.

I have applied the tagless-final DSL approach to the completely different domain:
transforming terms representing natural language sentences into logical formulas. This
work is a part of a large project on natural language comprehension. The results have
been published in a series of papers in LNCS.

I have published the monograph:

Reconciling Abstraction with High Performance: A MetaOCaml approach.

nowpublishers, Foundations and Trends® in Programming Languages Series ISBN: 978-1-
68083-436-9

1-112 pp., 2018.

https://www.amazon.co. jp/Reconci ling-Abstraction-High-Performance-
Foundations/dp/1680834363

which presents tagless-final, in combination with staging, as the main method for
optimizing and compiling DSLs.

As part of disseminating research results and making them more accessible and applicable,
I have delivered a three-lecture course at the International Summer School on
Metaprogramming (Dagstuhl, Germany, 2019), on the tagless-final approach and its
algebraic semantics.

https://www.cl.cam.ac.uk/events/metaprog/2019/index.html

Tagless-final approach has been used, seemingly successfully, by other people, with
whom 1 have no affiliation or even contact:

Tagless-final approach was used in a conduct of a cancer treatment trial

Personalized Genomic Vaccine clinical trial NCT02721043,

Mount Sinai - Hammer Lab, 2016-1019. See

Sebastien Mondet: Bioinformatics, The Typed Tagless Final Way
https://icfpl7.sigplan.org/event/ocaml-2017-papers-bioinformatics-the-typed-tagless-
final-way

Tagless-final is used in Carnegie Mellon University"s Binary Analysis Platform.
https://discuss.ocaml.org/t/ann-bap-2-0-release/4719
https://icfp2l.sigplan.org/details/ocaml-2021-papers/10/Binary-Analysis-Framework-
BAP-Using-Universal-Algebra-and-Tagless-Final-Style-for-

Tagless-final is expounded in textbooks:

Mastering Functional Programming
by Anatolii Kmetiuk. Packt Publishing, 2018
http://ww.foxebook.net/mastering-functional-programming

Functional Programming for Mortals
Sam Halliday, LeanPub, 2020
https://1eanpub.com/fpmortals/read

and many articles and lectures, for details, see
https://github.com/atapin/awesome-tagless-final
https://awesomeopensource.com/projects/tagless-final

18 17 17

Kiselyov Oleg 12758
Polynomial Event Semantics: Negation 2021
Lecture Notes in Computer Science 82 95
DOI
10.1007/978-3-030-79942-7_6
Kiselyov Oleg 13215
Generating C 2022
Lecture Notes in Computer Science 75 93
DOI
10.1007/978-3-030-99461-7_5
KISELYOV OLEG MU SHIN-CHENG SABRY AMR 31
Not by equations alone: Reasoning with extensible effects 2021
Journal of Functional Programming -
DOI
10.1017/50956796820000271
Kiselyov Oleg Imai Keigo 12073
Session Types Without Sophistry 2020
Lecture Notes in Computer Science 66 87

DOl
10.1007/978-3-030-59025-3_5

Kiselyov Oleg Hoshino Yuya 12331
Lambek Grammars as Second-Order Abstract Categorial Grammars 2020
Lecture Notes in Computer Science 231 243
DOI
10.1007/978-3-030-58790-1_15
, Oleg Kiselyov -
Stream Fusion 2020
37 , 2020 -
DOI
Kiselyov Oleg 294
Effects Without Monads: Non-determinism ? Back to the Meta Language 2019
Electronic Proceedings in Theoretical Computer Science 15 40
DOI
10.4204/EPTCS.294.2
Kiselyov Oleg 11717
Polynomial Event Semantics 2019
Lecture Notes in Computer Science 313 324

DOl
10.1007/978-3-030-31605-1_23

KISELYOV OLEG

30

Many more predecessors: A representation workout 2020
Journal of Functional Programming e’
DOI
10.1017/5095679682000009X
Kiselyov Oleg Hoshino Yuya 12331
Lambek Grammars as Second-Order Abstract Categorial Grammars 2020
Lecture Notes in Computer Science 231 243
DOI
10.1007/978-3-030-58790-1_15
Kiselyov Oleg Sivaramakrishnan KC 285
Eff Directly in OCaml 2018
Electronic Proceedings in Theoretical Computer Science 23 58
DOI
10.4204/EPTCS.285.2
Kiselyov Oleg 10818
$$¥lambda $$A to SKI, Semantically 2018
Lecture Notes in Computer Science 33 50

DOl
10.1007/978-3-319-90686-7_3

Kiselyov Oleg

10838

Transformational Semantics on a Tree Bank 2018

Lecture Notes in Computer Science 241 252
DOI

10.1007/978-3-319-93794-6_17

Kiselyov Oleg Katsushima Tatsuya 10695

Sound and Efficient Language-Integrated Query 2017

Lecture Notes in Computer Science 364 383
DOI

10.1007/978-3-319-71237-6_18

Kiselyov Oleg 10838

Transformational Semantics on a Tree Bank 2018

Lecture Notes in Computer Science 241 252
DOI

10.1007/978-3-319-93794-6_17

Oleg Kiselyov na

Higher-order Programming is an Effect 2017

Informal Proc. HOPE 2017 at ICFP 2017. Oxford, UK, Sep 3, 2017 online

DOl

Oleg Kiselyov 2211.04107

Do Mutable Variables Have Reference Types? 2022
ACM SIGPLAN ML Family Workshop 2022/ArXiv online
DOl

10.48550/arXiv.2211.04107

Oleg Kiselyov and Haruki Watanabe in print
Events and Relative Clauses 2023
Lecture Notes in Computer Science in print
DOl
20 3 15

Oleg Kiselyov

QNP Textual Entailment with Polynomial Event Semantics

LENLS18 (Logic and Engineering of Natural Language Semantics 18)

2021

, Oleg Kiselyov

: OCaml

23 PPL 2021

2021

Oleg Kiselyov

Polynomial Event Semantics: Negation

Logic and Engineering of Natural Language Semantics 17 (LENLS17)

2020

Stream Fusion

37

2020

Oleg Kiselyov

Lambek Grammars as Second-order Abstract Categorial Grammars

Logic and Engineering of Natural Language Semantics, LENLS16

2019

Oleg Kiselyov

From the tagless-final cookbook: simple hardware description language and optimization-by-evaluation

Second International Summer School on Metaprogramming, Schloss Dagstuhl

2019

Oleg Kiselyov

lambda to SKI, Semantically. Declarative Pearl

Fourteenth International Symposium on Functional and Logic Programming

2018

Oleg Kiselyov

Lambda to SKI

IFIP Working Group 2.1, 77th meeting (Brandenburg, Germany)

2018

Oleg Kiselyov

Polynomial event Semantics: Non-Montagovian proper treatment of quantifiers.

Logic and Engineering of Natural Language Semantics, LENLS15

2018

Oleg Kiselyov

tagless-final extensible-effects [C3 ()]

20 PPL 2018

2018

Oleg Kiselyov

Systematic Generation of Optimal Code

Tutorial at IFL 2017

2017

Oleg Kiselyov

Sound and Efficient Language-Integrated Query: Maintaining the ORDER

EPFL, IC Colloquium (EPFL, Lausanne, Switzerland)

2017

Oleg Kiselyov

Higher-order Programming is an Effect

HOPE 2017 at ICFP 2017

2017

Oleg Kiselyov

Effects without monads: non-determinism

ML Family workshop at ICFP 2017

2017

Oleg Kiselyov

Sound and Efficient Language-Integrated Query -- Maintaining the ORDER

APLAS 2017

2017

Oleg Kiselyov

Transformational Semantics (TS) on a Tree Bank

LENLS 14

2017

Oleg Kiselyov

Do Mutable Variables Have Reference Types?

ACM SIGPLAN ML 2022 Workshop

2022

Oleg Kiselyov

Generating C

FLOPS 2022

2022

Oleg Kiselyov

Events and Relative Clauses

LENLS (Logic and Engineering of Natural Language Semantics 19)

2022

Oleg Kiselyov

Lambek Grammars and a New Look to Context-Free Grammars (half-tutorial)

AiDL 2022 Workshop

2022

1
Oleg Kiselyov 2018
Now Publishers 112

Reconciling Abstraction with High Performance: A MetaOCaml approach

Lambek Grammars as an embedded DSL
http://okmij.org/ftp/gengo/LG-algebra.html

Higher-kinded bounded polymorphism without ...
http://okmij.org/ftp/ML/higher-kind-poly.html

Better than shell pipes
http://okmij.org/ftp/ML/myawk/ index. html

Elementary Tutorial on Normalization-by-Evaluation
http://okmij.org/ftp/tagless-final /NBE.html

Embedding of lambda calculus with De Bruijn Levels
http://okmij.org/ftp/tagless-final/cookbook.html#dblevels
Lambda calc embedded in OCaml and normalization
http://okmij.org/ftp/Computation/lambda-calc.html#lambda-normalizer-ocaml

Executable direct denot sem of ... delim. control
http://okmij.org/ftp/continuations/implementations.html#denot
Algebras

http://okmij.org/ftp/tagless-final/Algebra.html
Evaluators, Normalizers, Reducers
http://okmij.org/ftp/tagless-final/semantics.html
Tagless-final operational semantics
http://okmij.org/ftp/tagless-final/cookbook.html#reducer
Non-determinism: a sublanguage rather than a monad
http://okmij.org/ftp/tagless-final/nondet-effect.html

