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Tensor representation and tensor networks have shown to be useful in deep learning models. This
pro%ec} has further promoted to solve the challenging problems in deep learning methods by using TN
technology.

Tensor decomposition and tensor networks (TNs) have recently gained
increasing attentions in machine learning, data mining and computer vision fields due to its
effectiveness in efficient computation and model compression in deep learning. However, there are
many open problems that are still unexplored, which limits its impact in machine learning. In this
project, we studied the fundamental model and theory of tensor networks and applied it for data
representation and model representation. We have introduced a novel tensor decomposition model
together with fast and scalable algorithms which can be applied to large-scale data completion and
image denoising. In addition, we also developed deep multi-task, multi-model learning and multiple
GANs methods based on tensor network representations, which shows powerful expressive ability and
economic model complexity.
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(1) Tensors (multiway arrays) provide a faithful and efficient way to represent the multidimensional
structured data. Tensor decomposition enable usto explicitly take the structure dependency within datainto
account and effectively capture the underlying multiple sets of latent factors. Thus, itstheory and algorithms

have been an active area of study within the past decade.

(2) Deep learning techniques have gained the considerable attention in both academic and industry
fields due to its significant performance in rea-world applications. However, there are some major
limitations of deep learning techniques such as the high computational complexity and huge number
of parameters. In addition, many hyperparameters need to be tuned such as the number of layers,
number of hidden units, learning rate, etc.

(3) Tensor networks (TNs) have recently gained increasing attentions in machine learning, data mining and
computer vision fields due to its effectiveness in efficient computation and model compression in deep
learning. However, there are many open problems that are still unexplored, which limits its impact in

machine learning.

(1) This project aims to investigate several novel machine learning frameworks. To establish a high-order
deep learning framework by exploiting tensor modeling of input, output and weight parameters. To establish
a deep tensor decomposition framework, leading to the powerful nonlinear tensor latent representations. To

apply tensor models for some real-world applications.

(2) This study also aims to understand the principle of TN by investigating the fundamental theory of TN,
and to develop scalable and efficient learning algorithms for TN that can be applied to large-scale data
analysis and machine learning applications. Based on these fundamental theory and algorithm studies, TN
applied to deep convolutional neural network (CNN), multi-task, multi-view, and multi-modal learning can
be further studied and improved with theoretical support. Moreover, this project will further explore how

to use TN technology to solve more challenging problemsin machine learning, which has not studied yet.

(1) We study the fundamental model and algorithm of tensor decomposition and tensor networks.
Specifically, we study tensor ring decomposition model and theory. The expressive power will be analyzed
systematically, and rank property, basic principle of arithmetic is studied. Then, these theories will be
further discussed and extended to general TNs. To learn the TN representation of large-scale data, the
scalable and fast algorithms will be developed. For specific algorithms, the popular regularizations such as

non-negative, sparsity, smoothness are employed to handle various situations.
(2) We study the tensor methods for representing data, such as data completion problem, image denoising,
super-resol ution problem of hyperspectral image. For different applications, we developed fast and scalable

tensor network-based machine learning a gorithms.

(3) We study tensor networks for the representation of model parameters. Specifically, we show how to use



tensor networks to deep neural network models, which is useful for model compression, efficient
computation, knowledge sharing in multi-task learning, and powerful feature fusion strategy in multi-modal

learning.

(1) We have studied the tensor based deep learning model and algorithms. In the traditional deep learning
methods, each layer is considered as a vector and the connection between layersis considered as a matrix.
However, the real-world data is usually represented as a high order tensor. To this end, we formulate the
deep learning framework by considering each layer as a tensor and the connection between the layers as
multilinear operations based on multiple matrices. The proposed model is able to capture the structural
information of data and to significantly reduce the number of model parameters, which shows better

performance on high-dimensional data classification tasks.

(2) We have developed a new tensor based generative adversarial network, which use tensors as input and
output, the fully connected layer can be modeled by multilinear product on each tensor mode. The

experimental results show that our method can alleviate the
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(3) We have introduced a new type of tensor decomposition model, which is called tensor ring
decomposition (see the right figure). We studied the theoretical ground and the mathematical properties of
the proposed model. Then, we developed several algorithms to solve this model. Finally, we applied it to

represent the fully connected weight parameters, yielding na
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(4) We have proposed a robust tensor decomposition approach for tensor completion by defining a new
tubal nuclear norm on tensors. The tubal nuclear norm has orientation invariant property which is the key
contribution to improve the robustness and performance for tensor completion task. The theory analysis of

tensor recovery condition is the main contribution in this work.

(5) We have devel oped a deep multimodal Iearning architecture based on multilinear tensor fusion of latent
layers. The proposed tensor fusion strategy is able to capture high-order interactions for inter-modal and

intra-modal features, which has more expressive power. In addition, we apply tensor network to represent



weight parameters, which thus reduce the computation complexity dramatically (see figure below). The

proposed method can improve the performance while not increasing model and computation complexity.
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(6) We have studied the theory analysis of matrix completion under linear transformations. This work
provides rigorous theory support for many "non-local" based low-rank completion methods. In addition,
the proposed framework is able to improve matrix completion performance by low-rankness under the

multiple transformations. Experiments results show its advantages in image in-painting task.

(7) We have devel oped several tensor completion algorithms based on tensor ring model. By defining tensor
ring based nuclear norm, we can solve low-rank tensor approximation by nuclear norm optimizations. For
large-scale data, we have developed an efficient randomized tensor ring decomposition algorithm, whichis
fast and scalable to very large tensors. The experiments on image completion, hyperspectral image
completion and denoising demonstrate that our method can obtain state-of -the-art performance under highly

missing rate, and scalable to very large data (see figure below).

Few cn}rlcs Approximated entries

/ High-order
tensorization ﬂﬂ na
el L ra -/
' ~ &9 @,
L HEH D Q..

Observed data ny— —n o % A
Higher-order — & & :
s\ /s Recovered data
Zn) ([
; 7 TN

Low-rank TT/TR approximation

Tensor Ring Representation

(8) We have studied multi-task deep learning models by using high-order tensor TRMTL
network technology. The existing multi-task deep learning models mostly

based on sharing the lower layers and having individual upper layers for each . % -l g
task. The problemisthat such framework cannot handle the case when different v \_/ \_/

tasks have different input dimensions and when different tasks have
heterogenous network architecture. To solve this challenging problem, we
proposed a new framework, which allows us to use heterogenous network
architecture for individual tasks, by leveraging tensor ring representation of |(_ v O|1O—0O
weight parameters of each layer and some of latent core tensors sharing : L &
between tasks (see the right figure). The experiments demonstrated that our

method is more flexible with high performance.

(9) We have proposed a new type of tensor decomposition to find the latent low-rank tensors under

reshuffling operations. The proposed method is based on convex tensor decomposition. As compared to



existing convex tensor decompositions which often require each component to be low-rank on each mode,
our method relax the low-rankness along specific mode unfolding to the low-rankness under random
reshuffling operations. As aresult, our method can theoretically guarantee the exact recovery of true latent
components. Moreover, this property allows us to apply it to a novel application of image steganography
(see figure below).
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(10) We have developed several novel methods for epilepsy focal detection based on iEEG data. Since
iEEG data with well-labelled annotations by clinical expertsis very difficult to obtain, we proposed to use
PU learning, one-dimensional CNN, and data augmentation methods to improve the performance of
epilepsy focal detection based on iEEG. The research is quite practical for hospital to provide an Al based

intelligent assistive diagnosis system.
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