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Establishment of real-time diagnostic system for needle electromyography by
audio features

NODERA, Hiroyuki
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Resting potentials of needle electromyography (needle EMG) obtained from
patients with neuromuscular diseases were databased. The classified waveforms were divided into
2-second audio files. Method 1) Audio characteristics were obtained from each audio file. Machine
learning methods was used to classify the six resting potentials. The accuracy was 90.4%. Method 2)
The same database as the method 1 was used. The audio information was transformed into
melspectrogram as image files. The images were divided into training and test data. The training
data were then trained with convolutional neural networks (CNNs). Image augmentation was useful in
that the accuracy was 100%.
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(A) #: P < 0.05; ##: < 0.01; ###: < 0.0001
1:2 (#); 1:3 (###); 1:6 (#HH); 2:3 (##H),
2:5 (##); 2:6 (#); 3:4/3:5/3:6 (###); 4:5 (#);
4:6 (##); 5:6 (#H#)

(B) #: P < 0.05; ##: < 0.01; ###: < 0.0001
1:2/1:3/1:4/1:5/1:6 (###); 2:3 (##); 2:5 (##);
3:4/3:5 (###); 3:6 (##); 4:5 (##H#); 5:6 (#iH#)

Class of EMG signals

(1) Complex Repetitive Discharges; (2) endplate potentials;
(3) fasciculation potentials; (4) fibrillation/PSW;
(5) myotonic discharges;(6) noise artifact
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IS_09 (no. of IS_11 (no. of 2
Feature set features = 384) features = 4,367)
Classifier Gradient Boosting Gradient Boosting Q0

Machine Machine

Correct classification rate 0.904 0.899
CRD (N=72) 0.900 0.946
Endplate potentials (N = 31) 0917 0.920
Fasciculation (N = 72) 0.967 0.949
Fibrillation/PSW (N = 89) 0.920 0.900
Myotonic discharge (N = 65) 0.920 0.849
Noise artifact (N = 60) 0.784 0.823

CRD, complex repetitive discharges; PSW, positive sharp waves.
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(A) Original data; training from scratch (B) Data augmented (N=20,000; fine-tuned)
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(A) VGG16
(B) ResNet50
(C) ResNet50
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