研究成果報告書 科学研究費助成事業

今和 6 月 1 7 日現在 3 年

	機関番号: 82641
	研究種目: 若手研究(B)
	研究期間: 2017 ~ 2020
	課題番号: 17K14906
	研究課題名(和文)界面動電法によるミクロ反応場を利用したベントナイト緩衝材中の化学反応の解明
	研究課題名(央文)Chemical reactions of bentonite in microscopic reaction fields generated using electrokinetic technique
	研究代表者
	田中 真悟 (Tanaka, Shingo)
	一般財団法人電力中央研究所・原子力技術研究所・特定主任研究員
	研究考悉是 · 9 0 7 4 9 0 3 7
1	- 交付決定類(研究期間全体)・(直接経費) - 3,300,000円

研究成果の概要(和文):放射性廃棄物の地層処分において、ベントナイト緩衝材の長期的なバリア性能を評価 するためには、圧縮された微細な空隙中での化学反応を明らかにする必要がある。本研究では、界面動電法によ る新たな実験から、ベントナイト緩衝材中の炭酸カルシウムおよび硫酸カルシウム析出の閾(しきい)条件を実 験的に見出すことに成功した。さらに、地球化学計算コードの適用性検証や圧縮状態で最適なパラメータ値の推 定を行った。得られた成果はベントナイト緩衝材の長期バリア性能評価モデルの改善に貢献することが期待され る。

研究成果の学術的意義や社会的意義 圧縮状態にあるベントナイト緩衝材中での化学反応は、効率的にデータ取得できる実験系の構築が困難であった ため、未解明な問題の1つであった。本研究では、界面動電法をベントナイト緩衝材中の鉱物析出反応に応用す ることで、反応の閾(しきい)条件を実験的に見出すことに成功し、この問題の解明に資する新たな実験系を提 案することができた。本研究で開発した一連の手法は、圧縮状態下にある他の多孔質媒体や化学反応にも応用可 能と考えられ、新たな機能性材料の創出など、他分野への波及効果も期待される。

研究成果の概要(英文):For evaluating long-term barrier performance of the bentonite in geological disposal of radioactive wastes, it is necessary to clarify chemical reactions in its confined spaces. In this study, precipitation thresholds of calcium carbonate and calcium sulfate in the bentonite were successfully found using an electrokinetic technique. Furthermore, an applicability of geochemical calculation code in confined condition was verified, and optimum parameters for the compacted state were estimated. The results obtained are expected to improve long-term evaluation models for bentonite barrier performances.

研究分野: 放射性廃棄物処分の安全評価

キーワード: 放射性廃棄物処分 ベントナイト 界面動電現象 物質移行 間隙水化学 析出 硫酸カルシウム 炭 酸カルシウム

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1. 研究開始当初の背景

放射性廃棄物処分の安全評価において、ベントナイト緩衝材の溶解や二次鉱物析出などの長 期的変質が緩衝材の低透水性に影響を及ぼす可能性がある。一方で、数万年に及ぶ変質を実験で 確かめることは事実上不可能であるため、反応輸送解析による緩衝材の長期変質評価が重要と なる。反応輸送解析では、固相に比べて液相が非常に多い状態で得られたデータとバルク溶液で 成立する地球化学の諸法則を、圧縮状態にあるベントナイト間隙水にもそのまま適用している のが現状であり、解析結果の実験的検証は十分に行われていない。この理由として、圧縮状態で は間隙水中のイオン濃度や pH 等を精度良く測定できず、直接的なデータ取得が極めて困難であ ることが挙げられる。加えて、緩衝材中の物質移行が緩慢であることから、代替的なデータを取 得できる実験系の構築も難しい。

報告者らはこれまでにベントナイト中の物質移行に関する基礎研究として、電位勾配下における水、陽イオン、および陰イオンの移動現象(界面動電現象)に着目してきた^{[1][2]}。これらの 先行研究により、ベントナイト中の物質移行と化学反応を電気化学的に促進・制御することで、 圧縮状態での化学反応を新たな視点から検討できる見通しが得られた。

本研究では、化学反応としてベントナイト緩衝材中に随伴鉱物(不純物)としてわずかに含ま れる炭酸カルシウム(CaCO₃)および硫酸カルシウム(CaSO₄)の析出反応に着目した。これら の鉱物の溶解と析出反応はベントナイト中の間隙水組成に影響を及ぼすために重要であること に加え、溶解度積や pH の影響が両者で大きく異なることから、より広範囲な濃度および pH 条 件でのデータ取得に適している。

2. 研究の目的

界面動電法の適用によりベントナイト緩衝材中の緩慢な物質移行と析出反応を促進・制御で きる実験系を構築し、圧縮状態下において CaCO₃および CaSO₄の析出反応が生じる濃度条件を 明らかにする。さらに、実験で見出した圧縮状態での CaCO₃および CaSO₄の析出条件と地球化 学計算コード(PHREEQC)による予測結果とを比較し、圧縮状態下における地球化学計算コー ドの適用可能性を検証するとともに、圧縮状態下で最適なパラメータ値を推定する。

3. 研究の方法

ベントナイトの主要鉱物であるモンモリロナイトを Na 型および Ca 型に精製した。これを所 定の Ca 濃度となるように配合し圧縮成形(乾燥密度 1.0 kg/dm³)した後、脱イオン水で飽和さ せた(Na/Ca 混在型モンモリロナイト)。同様に、圧縮成形した Na 型モンモリロナイトを様々な 濃度の Na₂CO₃溶液または Na₂SO₄溶液で飽和させた。これらの試料を接触させ(接触面:0mm)、 定電流 5 mA にて 24 時間通電することにより Ca²⁺イオンと CO₃²⁻イオンまたは SO₄²⁻イオンを圧 縮状態下で混合させた。このとき、混合後の間隙水組成が CaCO₃または CaSO₄に対して過飽和 である場合、核形成と結晶成長に伴う析出反応が進行し、実験的に観測可能な Ca の特異的なピ ークが出現する。これにより各鉱物に対する析出反応の閾(しきい)条件、すなわち過飽和とな る濃度条件を効率的に見出すことが可能となる。

具体例として、図1に CaCO₃ 析出実験の概要と析出がある場合の Ca 濃度分布の例を示す。Ca 濃度に特異的なピークが存在することから、通電によりベントナイト間隙水が CaCO₃ に対して 過飽和になったと推測できる。このような実験を様々な濃度条件で実施し、CaCO₃ または CaSO₄ に対する特異的ピークの有無から、過飽和または不飽和となる濃度領域を推定した。

図1 析出実験の概要と CaCO3 析出に伴う Ca の特異的ピーク出現の例

また鉱物析出が十分に認められた試料に対し、電子プローブマイクロアナライザ(EPMA)による析出形態の観察と、X線回折法(XRD)による鉱物の同定も行った。

実験に加えて、PHREEQC を用いて様々な濃度条件での CaCO₃ または CaSO₄に対する過飽和 度を計算した。具体的には、実験と同様の乾燥密度 1.0 kg/dm³に相当する固液比 5 g/mL で、Na/Ca 混在型モンモリロナイトと Na₂CO₃ 溶液または Na₂SO₄ 溶液とを混ぜ合わせた状況を仮定した平 衡計算を実施した。実験で推定した過飽和領域と、計算コードから得た過飽和領域とを比較し、 圧縮状態下における各鉱物の析出反応を地球化学計算コードで予測できるかを検証するととも に、圧縮状態下での平衡計算に最適なパラメータ値(Na/Ca イオン交換の選択係数など)を推定 した。

4. 研究成果

2017年度は初めに CaSO₄ 析出実験に必要な化学種(水、Na⁺, Ca²⁺, および SO₄²⁻)の電位勾配 下における移行パラメータを取得した^[3]。さらに、図 1 と同様の実験から CaSO₄ 析出反応の闕条 件を実験的に見出し、PHREEQC による過飽和度の計算結果と比較した^[3]。このとき、圧縮モン モリロナイト中の空隙構造として二重空隙モデル(全空隙をモンモリロナイト層間と粒子間空 隙に分類)を採用し、CO₃²⁻イオンおよび SO₄²⁻イオンは陰イオン排除により全て粒子間空隙に存 在すると仮定した。これらの仮定に加え、主要な入力パラメータである Na/Ca イオン交換反応の 選択係数 K_{GT} を圧縮状態に最適化(log_K_{GT} = 2.3)することで、CaSO₄ 析出反応の有無を飽和指 数(SI: Saturation Index)で概ね説明できることを示した^[3]。この知見をベースとして、2018年度 は CaSO₄ に加え CaCO₃の凝集体サイズを電気化学的に制御する手法を開発した^[4]。これらの成 果は2報の論文として国際誌に掲載された。さらに、2019年度には Ca 濃度と電流値(すなわち 混合速度)を変化させた実験から、CaSO₄ の過飽和度の増加とともに凝集体の成長速度が増加す ることについて定性的な理解を得た。

2020年度は、CaSO4に比べて溶解度積が小さいCaCO3析出反応の鬫条件を実験的に見出した。 図2に様々な濃度条件における通電後のCa濃度分布を示す。Ca²⁺イオンは電場により6mm程 度カソード(右側)へ移行していることが分かる。一方CO3²⁻イオンの通電後の濃度分布は取得 していないが、移行挙動が類似しているSO4²⁻のデータ^[3]から、CO3²⁻イオンも同様に僅かにアノ ード(左側)へ移行したと推定される。これらに加えて、各イオンの分散に伴う濃度低下を考慮 すると、Ca²⁺イオンとCO3²⁻イオンが初期濃度を維持しながら混合している領域は全ての条件で 概ね0-4mmの範囲と考えられる。図2を見ると、Caの特異的ピークが出現するケースがあり、 これらのケースではCa²⁺イオンとCO3²⁻イオンとの混合により、間隙水組成がCaCO3に対して 過飽和に達したと判断できる。またピークの高さは過飽和度の大きさに相当する。

実験と並行し、PHREEQC を用いて様々な濃度条件(モンモリロナイト中の Ca 当量分率および Na₂CO₃ 濃度の組み合わせ)での反応を模擬した平衡計算を行い、各 Ca 当量分率および Na₂CO₃ 濃度に対する CaCO₃ の飽和指数(SI)を取得した。結果を図 3 にコンターとして示す。ここで、SI=0 は平衡、SI>0 は過飽和領域、SI<0 は不飽和領域を表している。このとき基準となる CaCO₃ 鉱物の溶解度積として、バルク溶液中で初期に析出する Vaterite(溶解度積 Ksp = $10^{-7.9}$)の値を採用した。さらに、Na₂CO₃ 水溶液はアルカリ性(pH=11 程度)を示すため、アルカリ環境で顕在化するモンモリロナイト端面水酸基と Ca²⁺イオンとの表面錯体反応^[5]を考慮した。

図3から、計算コードで得た Vaterite に対して平衡状態となる線(破線:SI=0)は、実験で推定した平衡線(赤線)よりもわずかに上側に位置しているものの、全体的な傾向については概ね再現できたといえる。すなわち、2017年度に CaSO4 析出反応の闘条件から推定した圧縮状態下での Na/Ca イオン交換の選択係数(log_K_{GT}=2.3)^[3]に加え、CaCO3では新たにアルカリ環境で顕在化するモンモリロナイト端面水酸基の影響を考慮することで、圧縮状態下においても CaCO3 析出反応の予測に地球化学計算コードが適用できる可能性が示された。

図3 地球化学計算コード(PHREEQC)による様々な濃度条件での Vaterite の飽和指数(SI) および実験で認められた CaCO₃ 析出に伴う Ca 濃度ピークの有無(□がピークあり)

<引用文献> [1] Tanaka S., et al., Phys. Chem. Earth **33**, S163-S168 (2008) [2] Tanaka, S., et al., J. Nucl. Sci. Technol. **48**, 454-462 (2011) [3] Tanaka S., Appl. Clay Sci. **161**, 482-493 (2018) [4] Tanaka, S., Appl Clay Sci. **181** 105206 (2019) [5] Sugiura, Y., et al., Appl Clay Sci. **200**, 105910 (2021).

5.主な発表論文等

〔雑誌論文〕 計2件(うち査読付論文 2件/うち国際共著 0件/うちオープンアクセス 1件)

1.著者名	4.巻
Tanaka Shingo	181
2.論文標題	5 . 発行年
Electrokinetic control of the growth of gypsum aggregates in compacted montmorillonite	2019年
3. 雑誌名	6.最初と最後の頁
Applied Clay Science	105206 ~ 105206
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1016/j.clay.2019.105206	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-
	·

1.著者名	4.巻
Tanaka Shingo	161
2.論文標題	5 . 発行年
Gypsum precipitation enhanced by electrokinetic method and porewater chemistry in compacted	2018年
montmorillonite	
3. 雑誌名	6.最初と最後の頁
Applied Clay Science	482 ~ 493
掲載論文のD01(デジタルオプジェクト識別子)	査読の有無
10.1016/j.clav.2018.05.011	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-

〔学会発表〕 計2件(うち招待講演 0件/うち国際学会 1件)

1.発表者名

Tanaka Shingo

2.発表標題

ELECTROKINETIC CONTROL OF THE GROWTH OF SECONDARY MINERALS IN COMPACTED MONTMORILLONITE

3 . 学会等名

17th International Conference on the Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere (Migration 2019)(国際学会)
4.発表年 2019年

. . .

1.発表者名 田中真悟

2.発表標題

電場による圧縮ベントナイト中の硫酸カルシウムの析出促進と間隙水化学に関する考察

3 . 学会等名

日本原子力学会2018春の年会

4.発表年 2018年 〔図書〕 計0件

〔産業財産権〕

〔その他〕

-

6	研究組織

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
--	---------------------------	-----------------------	----

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関
---------	---------