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The results and data generated in the project help us to better understand the link between the
aberrant epigenetic changes and the gene expression in cancer. This opens a way to uncover the
theragnostic potential of epigenetically regulated genes in clinical cancer research.

Despite decades of research, few cancer biomarkers are being used in
clinics. Based on the assumption that DNA methylation is involved in stable, long-term regulation,
we propose that differentially expressed genes that are caused by aberrant DNA methylation are
optimal candidates for biomarkers. We performed computation analyses integrating publicly available
transcriptomic and epigenomic data. We discovered 49 coding genes and 10 noncoding RNAs, which are
upregulated in NSCLC lung cancer due to promoter hypomethylation. We also observed that multiple
copies of the REP522 DNA repeat family are activated in lung cancer by DNA hypomethylation and
histone modification. To study the link between DNA methylation and transcription more closely, we
ﬁerformed perturbation experiments, where normal cells were treated with a demethylatin? agent and

istone deacetylase inhibitor. The perturbations were followed by gene expression profiling (CAGE),
DNA methylation array, and single-cell C1-CAGE.
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1. WFFERIAR S IO 5

Research Background

Despite decades of research, few cancer biomarkers are being used in clinics. In our
previous pan-cancer work published in Cancer Research (Kaczkowski, B, et al. 2016),
we identified de-regulated protein-coding genes and IncRNA across cancer cell lines by
analyzing Cap Analysis of Gene Expression (CAGE) profiles from FANTOMS5 project.
Here, based on the assumption that DNA methylation is involved in stable, long-term
regulation, we propose that differentially expressed genes that are caused by aberrant

DNA methylation are optimal candidates for biomarkers.

2. WFEDO BB

Purpose of Research
The purpose of this research is to find a novel approach to deeply integrate

transcriptomics and epigenetics data and to find robust cancer biomarkers that are
regulated at epigenetic level (epi-markers/drivers), including novel IncRNAs and
transcribed repetitive elements. To that end, we performed computation analyses
integrating publicly available transcriptomic and epigenomic data. These included
computational analysis of the integrative analyses of gene expression and DNA
methylation across cancer samples from TCGA consortium. To study the link between
DNA methylation and transcription more closely, we performed a set of controlled,
perturbation experiments, where normal epithelial cells (MCF10A) were treated with a
demethylating agent and histone deacetylase inhibitor. The perturbations were followed

by gene expression profiling (CAGE), DNA methylation array, and single-cell C1-CAGE.

3. WHEDHE
Methods

(1) Identifying epigenetically regulated genes in NSCLC by integrative analyses of

CAGE, RNA-seq and DNA methylation data

We analyzed and integrated publicly available data: A) CAGE expression data of 16
normal lung epithelial cells and 16 NSCLC cell lines (FANTOMS5); B) RNA-seq of 515
lung adenocarcinomas with 59 normal tissue controls, 501 lung squamous cell carcinoma
with 49 normal tissue controls (TCGA); and C) DNA methylation array data from TCGA
project and GSE36216 dataset.

(2) Pan-cancer analysis of REP522 repeat activation in primary cancers.
I analyzed RNA-Seq data from 21 TCGA primary tumor types and normal tissue control
data profiled by TCGA (The Cancer Genome Atlas, https://gdc-portal.nci.nih.gov)

(3) Epigenomic perturbation in the MCF10A cell line.
We performed a series of epigenetic perturbations in normal epithelial cells (MCF10A).
We tested four conditions, where the cells were treated with: 1) DAC (5-aza-2'-
deoxycytidine, DNA demethylating agent, 500nM), 2) TSA (Histone Deacetylase inhibitor,
500nM), 3) DAC and TSA combination, and 4) DMSO control.



(4) CAGE and methylation profiling after perturbations (bulk).
After the perturbations, the cells were profiled by CAGE 5’start RNA sequencing to allow
for promoter level gene expression analysis. We also performed DNA methylation
profiling using Illumina EPIC DNA methylation array that covers ~830 thousand
methylation sites across the genome.

(5) Single-cell gene expression profiling after perturbations.
To study the heterogeneity of response to the demethylating drug we also performed C1-

CAGE profiling after the perturbations. C1-CAGE is a single-cell implementation of Cap
Analysis of Gene Expression (Kouno, T. et al. Nat. Commun. 2019)

4. WFERR
Research Results

(1) Identifying epigenetically regulated genes in NSCLC by integrative analysis

CAGE and DNA methylation data

In collaboration with researchers from Tokyo University, we performed the integrative
analyses of gene expression and DNA methylation in lung cancer cell lines and clinical
tumors. We discovered a set of 49 coding genes and 10 long noncoding RNAs (IncRNA),
which are upregulated in NSCLC cell lines due to promoter hypomethylation. We
validated 22 epigenetically up-regulated genes in the adenocarcinoma and squamous cell
cancer subtypes of lung cancer using RNA-seq data from The Cancer Genome Atlas.
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Figure 1 Visual Overview of the article “Integrative CAGE and DNA Methylation Profiling
Ildentify Epigenetically Regulated Genes in NSCLC’ as published in Molecular Cancer

Research (Horie, M., Kaczkowski, B.*, et al., 2017, *co-corresponding author.)



REP522 is an unclassified interspersed repeat of 1.8 Kb in size, with a large palindrome
of ~600nt in the center. It is a small and elusive family of repeat elements with just 368
copies in the genome. Previously, we reported that many REP522 repeats harbor
bidirectional promoters that are activated in multiple cancer types (Kaczkowski, B, et al.
2016). Such REP522 elements are silent in normal cells, but become active promoters in
cancer cells and drive the expression of multiple long non-coding RNAs and pseudogenes.

Here, we observed that multiple copies of the REP522 DNA repeat family are, in fact,
epigenetically activated in lung cancer by DNA hypomethylation and histone
modification typical to active promoters (H3K4me3). The activated REP522 repeat
elements act as bi-directional promoters for cancer-specific IncRNAs, e.g. RP1-90G24.10,
AL022344.4, and PCAT7. (See Figure 1 for Visual Overview).

(2) Pan-cancer analysis of REP522 repeat activation in primary cancers.
Here, I performed the pan-cancer analyses using RNA-Seq data from 21 tumor types
profiled by The Cancer Genome Atlas (TCGA). I calculated the frequency (%) of
activation/expression of REP522 promoters across 21 cancer types (7916 primary tumors
and 725 normal tissue controls) (Figure 2) The results were presented as a poster at the
Human Genomics meeting (Kaczkowski B.*, et. al. 2018, Human Genomics 2018,
12(Suppl 1):9).
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Figure 2 The heatmap shows the frequency (%) of activation/expression of REP522 promoters
across 21 TCGA cancer types. Activation threshold was set to mean(x) + 3sd(x), where x is
the expression in normal samples. Genes with a frequency of activation > 5% in 7 (out of 21,
1/3) TCGA cancer types are shown. (Kaczkowski B.*, et. al. 2018, Human Genomics 2018,
12(Suppl 1):9, poster abstract).



(3) Epigenomic perturbation in the MCF10A cell line.
To complement the computational analysis of publicly available data, we performed new
experiments where we are perturbing the DNA methylation and histone acetylation in

normal epithelial cells (MCF10A), which is followed by promoter level transcriptomic

profiling using CAGE technology. This controlled, perturbation experiment enables us to
understand the direct link between the epigenetic aberrations and transcription and if
hypomethylation on its own is enough to activate the transcription of epigenetic cancer
biomarkers and repeat elements including REP522. This work is done in collaboration
with Dr. Kazuhide Watanabe from RIKEN IMS. Preliminary results of CAGE profiling
show that DAC/TSA combination has the strongest effect on the transcriptome (Figure3).

Further analyses are now ongoing.
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Figure 3 The effect of DAC (DNA demethylating agent) and TSA (Histone Deacetylase
inhibitor) on gene expression in MCF10A cell line (+ DMSO control). A) Hierarchical
clustering based on 500 most variant genes. B) Heatmap visualizing the expression (log2 tag

per million) of 50 most variant genes.

(4) Single cell gene expression profiling after perturbations.
Single-cell sequencing will offer us an opportunity to study the heterogeneity of how
individual cells respond to the demethylating drug. The single-cell experiments have
been performed and RNA samples are awaiting C1 CAGE library preparation and deep
sequencing. The single-cell sequencing data are estimated to be generated by September
2020 and will be analyzed soon afterwards.
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