科学研究費補助金研究成果報告書

平成21年 4月30日現 在

研究種目:基盤研究(A) 研究期間:2006~2008 課題番号:18206041 研究課題名(和文) ノーマリオフ型GaN HEMTの作製・評価の研究 研究課題名(英文) Fabrication and characterization of normally-off GaN HEMTs 研究代表者 水谷 孝(MIZUTANI TAKASHI) 名古屋大学・大学院工学研究科・教授 研究者番号:70273290

研究成果の概要:

本研究では、開発の期待が高い高性能ノーマリオフ型GaN FETの課題を解決する方法として、 InGaN cap 層導入によるひずみ分極制御 AlGaN/GaN HEMT、および高誘電率を有する HfO₂をゲー ト絶縁膜とする GaN MOSFET, AlGaN/GaN MOSFET を提案した。さらにデバイス試作により本提案 の有効性を示すとともに、しきい値がおのおの 1.1V, 3Vのノーマリオフ動作を実現し、また 高い電流駆動能力を実証した。

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2006年度	28, 700, 000	8,610,000	37, 310, 000
2007年度	6,400,000	1, 920, 000	8, 320, 000
2008年度	3, 900, 000	1, 170, 000	5, 070, 000
総計	39,000,000	11, 700, 000	50, 700, 000

研究分野:工学

科研費の分科・細目:電気電子工学、電子デバイス・電子機器 キーワード:GaN, HEMT、ノーマリオフ、MOSFET, InGaN cap, ひずみ分極

1. 研究開始当初の背景

GaN は大きなバンドギャップおよび高い電 子飽和速度を有し、高出力・高周波デバイス 応用の期待が高い。本デバイスの研究開発が 精力的に行なわれた結果、ノーマリオン型 HEMT については実用化がなされつつある。一 方ノーマリオフ型デバイスは負電源が不要 で回路構成が簡単となるばかりか、大出力電 源系のフェールセーフシステム構築には不 可欠でありその開発が強く求められている。 しかしながら従来のノーマリオフ型 HEMT で は、(1)ゲートリセスのための精密エッチン グが必要である、(2)高いゲート順バイアス が印加できない、(3)寄生抵抗の増大、(4)オ ン電流の低下という課題は、ノーマリオフ型 ではより顕著となり開発の大きな障害とな っていた。

2. 研究の目的

本研究ではこれらの課題を解決し得る高 性能ノーマリオフ型デバイスを実現するこ とを目的とする。具体的には、InGaN cap 層 導入によるひずみ分極制御 InGaN/AlGaN/GaN HEMT のノーマリオフ動作実現の可能性、およ び高誘電率を有する HfO₂ をゲート絶縁膜と する GaN MOSFET, AlGaN/GaN MOSFET の可能 性を明らかにすることを目的とする。

3. 研究の方法

(1) InGaN cap によるノーマリオフ化

図1に示すように、通常の AlGaN/GaN HEMT 構造の上に InGaN cap 薄膜を形成し、InGaN cap 内分極により、ノーマリオフ化を実現す る。すなわち、図2(a)に示すようにひずみ 分極により伝導帯下端は持ち上げられ、ノー マリオフ動作が実現される。一方 InGaN cap がない場合は図2(b)に示すとおりゲート電 圧(V_{cs})=0V において伝導帯下端はフェルミレ ベルより下にくるため AlGaN/GaN 界面に二次 元電子が誘起され、ノーマリオン動作となる。 従ってゲート電極下のみ InGaN cap を残し、 ゲート・ソース、ゲート・ドレイン間のアク セス領域の InGaN cap をエッチングにより除 去すれば、寄生抵抗の小さなノーマリオフ HEMT が可能となる。本素子においてはしきい 値電圧のばらつき・再現性低下の原因となる ゲートリセスエッチングは不要という特徴 を有する。

図 1 InGaN cap を 有 す る AlGaN/GaN HEMTs の断面模式図.

(a) InGaN cap がある場合

(b) InGaN cap のない場合

(2)HfO₂をゲート絶縁膜とした MOSFET の検討
 ①HfO₂ GaN MOSFET

分極を利用した InGaN cap HEMT のゲート はショットキ接合であるためゲート順方向 バイアスは 1V 以上には大きくできず、ON 電 流をあまり大きくできない。このため小信号 用にはよいが、大出力用途には適さない。こ の課題を解決し得る構造として、ゲート順バ イアスリーク電流を小さくできる、図3に示 す MOSFET を検討する。

Dopant:Mg=2×1017cm-3

ソース・ドレイン n⁺層としては、Si イオン 注入は行わず、オーミックの合金処理で形成 された電極/n⁺層を用いる。これによりイオン 注入層の高温活性化アニール、低活性化率の 問題を回避する。ゲート絶縁膜としては、 high-k 材料である HfO₂を用い、高い電流駆動 能力の実現を狙う。またゲート電極はソー ス・ドレイン電極の一部にオーバーラップさ せる。本構造により、ソース・ドレインの寄 生抵抗の低減を可能とする。

OHf O_2 AlGaN/GaN MOSFET

GaN MOSFET に比べてさらなる特性向上を目 指して HfO₂/AlGaN/GaN MOSFET を検討する。 素子構造と対応するエネルギーバンドを図 4に GaN MOSFET と対比して示す。本構造で は高品質の AlGaN/GaN 界面をチャネルとして 利用できるので、特性の向上が期待できる。

- 4. 研究の成果
- (1) InGaN cap によるノーマリオフ化

図 5 の $I_D - V_{DS}$ 特性および転送特性に示すよ うに、しきい値電圧 0.4V のノーマリオフ動 作が実現できた (InGaN:アンドープ、In 組成 は 0.2、厚み 5nm)。相互コンダクタンス g_m の最大値は 85mS/mm であった。参照用に作製 した InGaN cap の無いデバイスでは、しきい 値電圧は-1.5V とノーマリオン動作であった。 この結果は InGaN cap の分極効果により 1.9V のしきい値電圧シフトが実現されたことを 示している。

次に、より強いノーマリオフ化を実現する ため、InGaN cap に Mg をドープした p-InGaN cap (1x10²⁰cm⁻³、In 組成は 0.2、厚み 4nm)を 検討した。Mg の最適活性化アニール温度は 800℃であることを明らかにするとともに、 i-InGaN cap に比べてさらなるしきい値シフ ト(1.3V)を示し、しきい値電圧として1.1V を実現した。

図5 InGaN capを有する GaN HEMT の電流— 電圧特性. (a) $I_{\rm D}$ - $V_{\rm NS}$ 特性,(b) 転送特性.

(2)Hf0₂をゲート絶縁膜とした MOSFET の検討
 ①Hf0₂ GaN MOSFET

図6の I_p - V_{GS} 特性で示すように、しきい値 電圧約8Vのノーマリオフ MOSFET を実現した。 また、ゲート順方向バイアスは20Vと、シ ョットキ障壁ゲート型デバイスにおける順 方向ゲートバイアス1~2V に比べるとはる かに大きい値である。ゲート電圧20Vにおけ るドレイン電流は400mA/mmとノーマリオフ 型としては比較的大きく,また最大の相互 コンダクタンスは45mS/mmとGaN MOSFET (ゲ ート絶縁膜:SiO₂)のこれまでの最高値6mS/mm に比べるとはるかに大きい値である。

図 6. GaN MOSFET の $I_D = V_{GS}$ 特性、 $g_m = V_{GS}$ 特性

図 7 のゲート電流 I_6 —ゲート電圧特性で 示すように、SiO₂, Si₃N₄ をゲート絶縁膜とす る MOSFET に比べてゲートリーク電流が最も 少なく、この点でも HfO₂の優位性を示してい る。

図7. 学種ゲート絶縁膜の *I_D-V_{GS}*特 性の比較

 $②HfO_2$ AlGaN/GaN MOSFET

図8のドレイン電流のゲート電圧(V_{GS})依 存性から見積ったしきい値電圧は約3Vであ る。今回使用したエピ構造を用いて作製した 通常 HEMT のしきい値電圧は0.1Vであったこ とから HfO₂ 膜中あるいは HfO₂/AlGaN 界面に 負の電荷が導入されたものと思われる。

ドレイン電流は、ゲート電圧 10V において 730mA/mm とノーマリオフ型としては非常に 大きな値が実現できた。また最大の相互コン ダクタンスは 185mS/mm と上記 GaN MOSFET の 値 45mS/mm に比べさらに 4 倍の改善が得られ ている。以上により、高品質の A1GaN/GaN 界 面をチャネルとして用いる本構造の有効性 を明らかにできた。

さらにデバイスシミュレーションを行い、 Hf0₂/AlGaN 界面に界面準位が存在する場合、 しきい値電圧がシフトするとともに g_m が低 下することを明らかにした。なお界面準位密 度を 3.5×10^{12} cm⁻²以下に抑えれば g_m の低下を 10%以下に、しきい値シフトを0.3V以下に抑 えることが可能であることを示した。

図8. AlGaN/GaN MOSFETの I_D-V_{GS}特性、

5. 主な発表論文等

[雑誌論文](計13件)

 M. Ito, <u>S. Kishimoto</u>, F. Nakamura, <u>T.</u>
 <u>Mizutani</u>, "Enhancement-mode AlGaN/GaN HEMTs with thin InGaN cap layer", phys. stat. sol. (c), Vol. 5, No .6, pp. 1929-1931, Mar. 27, 2008, 査読有

2. S. Sugiura, <u>S. Kishimoto</u>, <u>T. Mizutani</u>, M. Kuroda, T. Ueda, T. Tanaka, "Normally-off AlGaN/GaN MOSHFETs with HfO₂ gate oxide", phys. stat. sol. (c), Vol. 5, No .6, pp. 1923-1925, Mar. 25, 2008, 査読有

3. S. Sugiura, S. Kishimoto, T. Mizutani, M. Kuroda, T. Ueda, T. Tanaka, "Enhancement-mode *n*-channel GaN MOSFETs fabricated on *p*-GaN using HfO₂ as gate oxide", Electronics Letters, Vol. 43, No. 17, pp. 952-953, Aug. 16, 2007, 査読有 4. T. Mizutani, M. Ito, S. Kishimoto, F. Nakamura, "AlGaN/GaN HEMTs with Thin InGaN Cap Layer for Normally Off Operation", IEEE Electron Device Letters, Vol. 28, No. 7, pp. 549-551, July, 2007, 査読 有

[学会発表] (計26件)

1. T. Mizutani, S. Sugiura, S. Kishimoto, M. Т. Ueda. Kuroda, Т. Tanaka. "Normally-off AlGaN/GaN MOSFETS with HfO_2 Gate Oxide Deposited by Pulsed-Laser Deposition", Workshop on Compound Semiconductor Devices and Integrated Circuits Held in Europe (WOCSDICE 2008), Leuven, Belgium, May 18-21, 2008

水谷 孝, "ノーマリオフ型 GaN 電界効果
 トランジスタ"、学術振興会 162 委員会第 58
 回研究会、2008 年 5 月 18-21 日

3. M. Ito, <u>S. Kishimoto</u>, F. Nakamura, <u>T. Mizutani</u>, "Enhancement-Mode AlGaN/GaN HEMTs with Thin InGaN Cap Layer", 7th Int'l Conference of Nitride Semiconductors (ICNS-7), Las Vegas, Nevada, USA, September 16-21, 2007

4.S. Sugiura, <u>S. Kishimoto</u>, <u>T. Mizutani</u>, M. Kuroda, T. Ueda, T. Tanaka, "Normally-Off AlGaN/GaN MOSFETs with HfO₂ Gate Oxide", 7th Int'l Conference of Nitride Semiconductors (ICNS-7), Las Vegas, Nevada, USA, September 16-21, 2007

[産業財産件]〇出願状況(計1件)

名称:電界効果トランジスタおよびその製造 方法 発明者:水谷 孝,田中 毅,上田哲三, 権利者:名古屋大学、松下電器産業 種類:特許 番号:特願2007-78987 出願日:2007.3.26 国内外の別:国内

6.研究組織
(1)研究代表者
水谷 孝(MIZUTANI TAKASHI)
名古屋大学・大学院工学研究科・教授
研究者番号: 70273290

(2)研究分担者
岸本 茂(KISHIMOTO SHIGERU)
名古屋大学・大学院工学研究科・助教
研究者番号:10186215
大坂 次郎(OSAKA JIRO)(H18)
名古屋大学・大学院工学研究科・教授
研究者番号:20377849
黒内 正仁 (MASAHITO KUROUCHI)(H19, H20)
名古屋大学・大学院工学研究科・研究員
研究者番号:10452187