科学研究費補助金研究成果報告書

平成21年 5月 28日現在

研究種目:基盤研究 研究期間:2006~2003	(C) 8			
課題番号:18560488				
研究課題名(和文)	真空圧密に関する基礎的な研究			
研究課題名(英文)	CHARACTERISTICS OF VACUUM CONSOLIDATION			
 研究代表者 柴 錦春 (CHAI JINCHUN) 佐賀大学・理工学部・教授 研究者番号: 20284614 				

研究成果の概要:室内圧密試験とモデル試験によって、真空圧密の特性を検討した。(1) 真空圧密の沈下量は、同じ大きさの載荷によるものと同じか小さい。(2)両面排水地盤条 件での真空圧密沈下量は片面排水のものより小さい。(3)両面排水地盤状態で真空圧密と バーチカルドレーン(PVD)工法を併用する場合、PVDの最適打設深度が存在する。

交付額

			(金額単位:円)
	直接経費	間接経費	合 計
2006年度	2, 000, 000	0	2, 000, 000
2007年度	700, 000	210, 000	910, 000
2008年度	800, 000	240, 000	1, 040, 000
年度			
年度			
総計	3, 500, 000	450, 000	3, 950, 000

研究分野:工学

科研費の分科・細目:土木工学・地盤工学

キーワード:真空圧密、圧密試験、土圧係数、側方変位、地盤改良

1. 研究開始当初の背景

プレローディングは良く使う軟弱地盤改良 法の一つである。荷重は、盛土(載荷)と 真空圧あるいは真空圧と盛土の組み合わせ である。真空圧密は施工が簡単で、有効か つ経済的な地盤改良法である。また、地盤 中に化学物質を注入しないので、環境にや さしい地盤改良法でもある。当時日本での 真空圧密の応用事例が増えていた。しかし、 真空圧密のメカニズムと真空圧による地盤 の変形特性は盛土荷重によるも地盤の変形量 を予測する方法がまだ確立されていない。 このような背景で本研究を計画・申請した。 2. 研究の目的

本研究は、室内試験を中心に以下のことを明らかにすることを目的とする。

(1) 真空圧及び載荷荷重による室内圧密 試験を行い、その結果の比較検討によって、 真空圧密による地盤の変形特性、地盤中の 真空圧の分布状況を究明する。

(2) 室内モデル試験により、両面排水地盤 条件で、真空圧密とバーチカルドレーン (PVD)と併用する場合、PVDの最適打設深 度の決定法を確立する。

3. 研究の方法

(1) 室内圧密試験:載荷と真空圧両方がかけ

られるマルト㈱製層別圧密試験機を用いて、 ー層と二層地盤を想定して圧密試験を行い、 その結果の比較検討によって、真空圧密の特 性を検討した。

一層地盤の場合、再圧密した有明粘土試料を用いた。

②二層地盤の場合、一層は再圧密した有明 粘土試料、もう一層は有明粘土と砂の混合 試料を用いた。

(2) 両面排水地盤条件で真空圧密における PVD の最適打設深度に関するモデル試験:直 径 0.45m 高さ 0.9m のモデルを用いて、両面 排水地盤条件で真空圧密を行う場合、PVD の 打設深度の影響を検討した。試料として、土 は撹乱した有明粘土、PVD はジオテキスタイ ルの折重ねによって作成したものを使った。

4. 研究成果

本研究は主に真空圧密による地盤の変形特性;真空圧密における地盤の排水条件(片面、 両面)の影響;両面排水地盤において、真空 圧密と PVDを併用する場合、PVDの最適打 設深度の決定法について、以下の成果を得た。

(1)真空圧密による地盤の変形特性:真空 圧は地盤中に等方圧密応力を与えるので、地 盤中に内向きの側方変形を引き起こす可能 性がある。内向きの側方変位が発生したら、 真空圧密の沈下量は同じ大きさの載荷荷重 によるものより小さい。真空圧(80kPa)、載 荷(80kPa)による圧密試験結果を用いて、 試料に作用する土圧及び沈下量から試料の 側方変位が発生する条件と予測法を検討・提 案した。

①土圧係数:圧密リング壁の中間に設置された土圧計位置の垂直・水平(リングの拘束による部分の)有効応力によって土圧係数(K)は式(1)で計算した。

$$K = \frac{(\sigma_{h0} + \Delta \sigma_{h})}{(\sigma_{v0} + \Delta \sigma_{v})} \tag{1}$$

ここで σ'_{ho} 、 σ'_{vo} は初期水平・垂直有効応力、 $\Delta\sigma'_{h}$ 、 $\Delta\sigma'_{v}$ は水平・垂直有効応力増分である。 $K \geq \sigma'_{vo}$ の関係は図1に示す。最終K値につ いて、載荷の場合 σ'_{vo} の影響があまりないの に対し、真空圧の場合は σ'_{v0} が大きくなるに つれ最終K値が増加し、ゼロに近づく傾向を 示した。マイナスのK値は試料と圧密リング 間に隙間が発生したことを意味する。

②沈下量比:試料に内向きの側方変位が発生 する条件が以下に定義する kr で判断するこ とができる。

$$k_r = \frac{|\Delta\sigma_{vac}|}{|\Delta\sigma_{vac}| + \sigma'_{v0}}$$
(2)

図2 沈下量比とkr値の関係

ここで、 $\Delta \sigma_{vac}$ は真空圧である。 $k_r \ge k_o$ (k_o は 静止土圧係数)の場合、試料に内向きの側方変 位が発生する。室内圧密試験の条件で、真空 圧による圧密沈下量(S_{vac})と載荷荷重による 沈下量(S)の比を S_{vac}/S_l に定義し、 k_r と S_{vac}/S_l の関係は図2に示す通りである。つま り、真空圧密の沈下量は同じ大きさの載荷荷 重によるものより小さいか等しいである。

(2) 真空圧密における地盤の排水条件の影響:真空圧密における地盤の排水条件の影響は載荷荷重によるものと異なる

①一層試料の場合:両面排水で、試料の底面に真空圧を与えることができない。従って、両面排水地盤における真空圧密の沈下量は片面排水のものより小さい(図3)。しかし、真空圧密の場合、片面排水にしても、両面排水にしても、水は真空圧を与えた面からしか排水できないので、両方の圧密速度は同じである。

②二層試料の場合:真空圧密の結果は図4に 示す。図中のCは有明粘土試料、Mは混合試 料、C+Mは上は有明粘土、下は混合試料で あることを意味する。M+Cの場合、上は混 合試料、下は有明粘土試料を意味する。片面

図3 真空圧密沈下量における試料の排水条 件の影響

図4 二層試料の沈下量における層順の影響

排水の場合、層の順位は圧密速度に影響を与 えるが、最終沈下量に影響を及ぼさない。透 水係数が相対的に低い層が真空圧を与えた 面に位置する際、圧密速度は遅い。しかし、 二層試料で両面排水の場合、層の順位は圧密 速度だけではなく最終沈下量にも影響を及 ぼす。その原因として、二層両面排水の条件 で、最終的に試料中真空圧を与えた面に向き 定常流が発生する。水流の連続性を維持する ために、以下の式を満足しなければならない。

$$i_1 k_{v1} = i_2 k_{v2} \tag{3}$$

ここで、 $i_1 \ge i_2$ は層1と層2中の動水勾配、

(a) Layer-1 - layer-2

図5 二層両面排水の場合の真空圧分布

図6 両面排水地盤で真空圧密とPVD併用時 の真空圧分布

*k*_{v1} と *k*_{v2} は層1と層2の垂直方向の透水係 数。式(3)に示すように、透水係数が小さ い層中の動水勾配が高くなる。そして、層の 順位の交換によって、二層試料中の真空圧の 分布が変化し、圧密速度と最終沈下量に影響 を及ぼす。二層試料中の真空圧分布のイメー ジは図5に示す。

(3) 両面排水地盤で真空圧密と PVD と併 用する場合、PVD の最適打設深度:現場で真 空圧密を行う時、圧密期間を短縮するために、 ·般的に PVD を併用する。両面排水地盤条 件で PVD を軟弱層に貫通すれば、底面の排 水境界面で実質的に真空圧を与えず、地盤の 改良効果が良くない。このような状態を避け るために、PVD を未貫通にする。この場合、 マクロレベルで PVD 改良層と未改良層が二 層地盤を形成する。そして、定性的に地盤中 の真空圧分布は図6に示すようになる。PVD の打設深度が変化すると、真空圧の分布状況 も変化し、地盤への圧密効果も変化する。 PVDの最適打設深度の計算式:一定の真空 圧で地盤の圧密沈下量を最大にする条件で、 理論上 PVD の最適打設深度は式(4) で計 算することが出来る。

$$H_{1} = \left(\frac{k_{v1} - \sqrt{k_{v1}k_{v2}}}{k_{v1} - k_{v2}}\right)H$$
(4)

ここで kv1 と kv2 は PVD 改良層と未改良層中 の垂直方向の(等価)透水係数、H1は PVD の打設深度、Hは軟弱層厚である。 ②モデル試験:図7に示す直径0.45m 高さ 0.9mのモデルを用いて、両面排水地盤での

図7 モデル試験のスケッチ

図8 モデル試験の最終沈下量変化

真空圧密効果における PVD 打設深度の影響 を検討した。含水比約 120%の撹乱した有明 粘土で作成した初期高さ 0.78m のモデル地 盤に真空圧 40kPa と載荷荷重 40kPa を同時 に与えて、圧密試験を行った。載荷荷重を加 えた理由はモデル地盤中に内向きの側方変 位を防ぐためである。4ケースのミニ VDP の打設深度は 0.48m、0.58m、0.68m、0.73m であった。最終沈下量及び対応するミニ PVD の打設深度を図 8 に示す。この図からミニ PVDの最適打設深度は 0.58m と 0.68m 間に存 在することが分かる。式(4) で計算した最 適打設深度は 0.575m であり、0.58m とほぼ 一致している。

以上の結果から両面排水地盤に真空圧密と PVD を併用する場合、PVD の最適打設深度 が存在し、その数値について式(4)で計算 されることを明らかにした。

(4)成果の位置づけとインパクト:本研究 の成果は国際雑誌に3篇の論文を発表し、国 際的にその先進性、有用性を認めていると考 えられる。また、2007年と2008年国際会議 で本研究の成果に関連する基調講演を2回 行ったので、インパクトが大きいと言える。

(5) 今後の展望:近年、真空圧と盛土荷重 を組み合わせた軟弱地盤上に盛土を施工す るケースが増えている。しかし、真空圧と盛 土荷重を組み合わせる場合の地盤変形予測 法はまだ確立されていない。今後この方面の 研究が必要と考えている。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計3件)

- <u>Chai, J.-C.</u>, Matsunaga, K., Sakai, A. and <u>Hayashi, S</u>. Comparison of vacuum consolidation with surcharge load induced consolidation of a two-layer system. Geotechnique, Vol. 59 [doi: 10.1680/geot.8.T.020], 2009 (査読有).(現在 オンライン発表、9月印刷物が出る)
- ② Chai, J.-C., Miura, N. and Bergado, D. T. Preloading clayey deposit by vacuum pressure with cap-drain: Analyses versus performance. Geotextiles and Geomembranes, Vol. 26, No. 3, pp. 220-230, 2008 (査読有).
- ③ <u>Chai, J.-C.</u>, Carter J. P. and <u>Hayashi S</u>. Vacuum consolidation and its combination with embankment loading. Canadian Geotechnical Journal, Vol. 43, No. 10, pp. 985-996, 2006(査読有).

〔学会発表〕(計4件)

- <u>Chai, J.-C.</u>, Miura, N., Kirekawa, T. and Hino, T. Design methods of PVD installation depth for two-way drainage deposit. Proc. of Int. Symposium on Lowland Technology, Busan, Korea, pp. 13-20, 2008 (査読有、基調講演).
- ② <u>Chai, J.-C</u>, Sakai, A., <u>Hayashi</u>, S. and Hino, T. Characteristics of vacuum consolidation comparing with surcharge load induced consolidation. Proc. of Int. Symposium on Geotechnical Engineering, Ground Improvement and Geosynthetics for Human Security and Environmental Preservation, Bangkok, Thailand, pp. 111-124, 2007 (査読 有、基調講演).
- ③ <u>Chai, J.-C.</u>, Miura, N., and Nomura, T. Experimental investigation on optimum installation depth of PVD under vacuum consolidation. Proc. of 3rd Sino-Japan Geotechnical Symposium, Chongqing, China,

China Communications Press, pp. 87-94, 2007 (査読有).

④ <u>Chai, J.-C.</u>, Miura, N., and Bergado, D. T. Preloading clayey deposit by vacuum pressure with Cap-drain. Proc. of 21th Geosynthetics Symposium, Japan Chapter, International Geosynthetics Society, 21, pp. 45-52, 2006 (査読有).

〔図書〕(計 0件)

〔産業財産権〕○出願状況(計 0件)

○取得状況(計0件)

[その他]

6.研究組織
(1)研究代表者
柴 錦春(CHAI JINCHUN)
佐賀大学・理工学部・教授
研究者番号: 20284614

(2)研究分担者
 林 重徳(HAYASHI SIGENORI)
 佐賀大学・低平地研究センター・教授
 研究者番号: 80112308

(3)連携研究者