科学研究費補助金研究成果報告書

平成 21 年 6 月 23 日現在

研究種目:基盤研究(C)				
研究期間:2006~2008				
課題番号:18560660				
研究課題名(和文) マイクロ波誘電体ペロブスカイトの同形イオン置換法に基づく				
材質設計図の作成				
研究課題名(英文) Material Design for Microwave Dielectric Perovskites Based on				
Substitution by Isomorphous Ions				
研究代表者				
井川 博行(IKAWA HIROYUKI)				
神奈川工科大学・工学部・教授				
研究者番号:30016612				

研究成果の概要: 本研究では 3-1 に示した 9 組成系のうち、主に ~ の 6 系につき検討した。その結果、 $(Ba_{1-x}Ca_x)$ 、 $(Ba_{1-x}Sr_x)$ 、 $(Sr_{1-x}Ca_x)$ 置換系の比誘電率とQfの組成変化について、また、比誘電率およびQfのNbあるいはTaを含む化合物間の大小関係など、代表者らが既に報告している傾向を確認した。これにより、マイクロ波誘電率、Qfならびに共振周波数温度係数について、ペロブスカイト酸化物のAサイトイオン置換による材質設計の指針を作ることができた。なお、Scを含む系にのみ見られる、未確認ながら全域固溶という、想像もできなかった事実をあきらかにした。また、 $(Ba_{1-x}Ca_x)(Sc_{1/2}Nb_{1/2})O_3$ 系では合成手法に敏感に影響されて生成物が変化する、さらにはxが 0.44、0.47、0.50 焼結体の微細構造が大きく異なるなど、これから解明すべき奇妙な現象に気付かされている。

交付額

			(金額単位:円)
	直接経費	間接経費	合 計
2006年度	1,400,000	0	1,400,000
2007年度	900,000	270,000	1,170,000
2008年度	1,100,000	330,000	1,430,000
年度			
年度			
総計	3,400,000	600,000	4,000,000

研究分野:無機材料物性

科研費の分科・細目:材料工学、無機材料・物性

キーワード:誘電体物性 セラミックス イオン置換 ペロブスカイト酸化物 常誘電性 誘電率 誘電損失

1.研究開始当初の背景

本研究対象のマイクロ波通信用誘電体セ ラミックスは、誘電体共振器の中心部材とし て、移動体通信や衛星放送設備の小型化、普 及に大きく貢献した。その後、特に移動体通 信技術の急速な発展に伴い、誘電体セラミッ クスは共振器中心部材としての役割を終え た。しかし、社会の高度情報化に伴い、誘電 体セラミックスの用途は移動体通信基地局 機器に留まらず、ワイヤレス LAN 機器など の各種部品として多様化している。

そのため、種々の用途に要求される誘電体 セラミックスの開発や特性改善に役立つ材 質設計指針が求められていた。本研究はそれ らの要求に応える目的で立案された。

2.研究の目的

代表者らは1.に述べた背景認識に基づく 本課題前段研究を以前より行っている。これ ら研究を通じて、(a)既知の現象や解釈と大 略合致する、あるいは(b)既知の現象や解釈 と部分的不一致となる、あるいは大きく異な るなど、各化学組成系に固有の特徴的現象に 驚いてきた。これら体験より研究を継続拡充 する意義を強く感じ、実験方法に記載する組 成系研究で蓄積するデータを基に「マイクロ 波誘電体ペロブスカイトの同形イオン置換 法に基づく材質設計図」の信頼性と質をさら に向上させる。

- 3.研究の方法
- (1) 研究対象とした組成系

本研究にて実験した組成系を次に記す。 (Ba_{1-x}Ca_x)(Sc_{1/2}Nb_{1/2})O₃ (Ba_{1-x}Sr_x)(Sc_{1/2}Nb_{1/2})O₃ (Sr_{1-x}Ca_x)(Sc_{1/2}Nb_{1/2})O₃ (Ba_{1-x}Ca_x)(Sc_{1/2}Ta_{1/2})O₃ (Ba_{1-x}Sr_x)(Sc_{1/2}Ta_{1/2})O₃ (Sr_{1-x}Ca_x)(Sc_{1/2}Ta_{1/2})O₃ (Ba_{1-x}Ca_x)(Fe_{1/2}Nb_{1/2})O₃ (Ba_{1-x}Sr_x)(Fe_{1/2}Nb_{1/2})O₃ (Sr_{1-x}Ca_x)(Fe_{1/2}Nb_{1/2})O₃ (Sr_{1-x}Ca_x)(Fe_{1/2}Nb_{1/2})O₃

(2) 高密度焼結体試料の作製

対象とする組成系や個別実験により詳細 は異なるが、基本的には同じ手法・操作によ り高密度焼結体試料を作製した。そこで、 代表例である(Ba_{1-x}Ca_x)(Sc_{1/2}Nb_{1/2})O₃系につい て以下に述べる。

BaCO₃、CaCO₃、Sc₂O₃、Nb₂O₅の各市販特 級試薬、純度各 99.9%以上を出発原料として 用い、その灼熱減量を定法により測定した。 目指す組成xごとの化学量論に、加えて最終合 成物が 10gになるように各試薬を秤量採取し た。

秤量採取した試薬の全てを瑪瑙乳鉢へ入 れ特級アルコールを加え約一時間湿式混合 した。

混合粉をアルミナ坩堝(SSA-H)に移しスー パーカンタル炉(SSFT-1520、NIKKATO 社製) を用いて以下の条件で仮焼を行った。

5 °C/min 1300 °Cまで昇温→1300 °C:12h保持 →5 °C /min 300 °Cまで冷却。

仮焼紛を容量 80mL のジルコニア製ポット に移しジルコニアボール 20 個とエタノール を入れ、遊星ボールミル(P-5、フリッチュ社 製)にて粉砕・混合した。回転数:250rpm/45min。 15 分毎に遊星ボールミルの回転を止めてポ ットを取り出し、手で振って混合した。粉砕 したスラリー状の試料を瑪瑙乳鉢に移し、撹 拌しながら乾燥させた。同試料を上記条件に より再度仮焼および粉砕した。

仮焼および粉砕を2回行った試料を目開 き106μmのふるいに通した。同試料1.2gを 直径10mmの金型にて軽く1軸加圧成型後、 CUTE PACK (FCB-270、FUJI IMPULSE 製) によって真空封入した。それをスギノマシン 社 CIP 装置にて1.0GPa 静水圧を3分間印加 した。

白金箔を敷いた耐火度試験用坩堝へ静水 圧成型した試料を3個入れ、スーパーカンタ ル炉を用い次の条件で焼結した。5°C/min 1500°Cで昇温→2.5°C/min 1700°Cで昇温 →1700°C:9h保持→5°C/min1300°Cまで降温 →10°C/min300°Cまで冷却。

(3) 焼結体および生成物のキャラクタリゼー ション

粉末 X 線回折装置 (RINT2500VHF、リガク 社製)を用いて生成物の同定や格子定数測定 (Si内部標準法)を行った。対陰極は Cu で 加速電圧/フィラメント電流は 50kV/200mA、 走査速度:4°20/min、20走査幅:0.02°である。

He を用いた乾式密度測定器(Accupyc1330、 Micromeritics 社製)を用いて、焼結体の密度 を測定した。

焼結体内部組織は SEM および BSE により 観察した。装置は島津製作所製の SSX-550 で ある。また、同装置に装着した SEDX-500 に より EDX 組成分析を行った。

顕微ラマン分光光度計 (Holo Lab 5000、 KAISER 社製)にて、YAG2倍高調波レーザ - (532 nm)を励起光として、焼結体内部の ラマン分光を測定した。

(4) マイクロ波誘電性の測定

標記はHP8722Cネットワークアナライザー を用いた両端短絡型誘電体共振器法によっ た。共振モードTE₀₁₁(概略7GHz)にて取得 したデータをSU2-RODTE01 Ver.2により解析 した。(財)ファインセラミックスセンター製 標準試料を用いて、平行導体板の実効導電率 を校正した。また、室温での前記とは異なる 両端短絡型共振器を恒温器に置き、0°Cから 80°Cの各温度で同様に測定した。その 20°C と 80°Cの共振周波数より、同焼結体の共振周 波数温度係数(TCf)を算出した。

4.研究成果

3(1) に示した組成系 ~ についての研 究成果を報告する。組成系 ~ については、 一部還元した試料の再酸化が不十分など、今 後補わなくてはならない実験をかなり残し ている。そのため、同系についての報告は割 愛する。

(Ba_{1-x}Ca_x)(Sc_{1/2}Nb_{1/2})O₃系焼結体の粉末X線 回折図形を図1、図2に示す。図1より本系 では全域にわたりペロブスカイト構造を持 った調合組成化合物が単一相として作製可

図 1 (Ba_{1-x}Ca_x)(Sc_{1/2}Nb_{1/2})O₃系焼結体の粉末 X線回折図形。 は不純物である第2相を表 す。

能であると、ほぼ結論付けられる。断定でき ていないのは同図(k)~(n)に示した第2相が 認められるからである。また、(f)に追記した 超構造回折を含め、(a)~(m)は立方晶系とし て全回折に指数が一応は付く(除く 第2相 回折)。しかし、(n)~(p)は明らかに立方晶系 ではない。また、(a)~(m)に立方晶系指数が 付くと前記したが、 $\alpha_1 \ge \alpha_2$ 回折の分離の不明 瞭化に着目すれば(g)~(m)は厳密には立方晶 系ではない。

既に報告しているが、本系で最も注目され るのはBa²⁺とCa²⁺イオンの大きなイオン半径 の差異にも関らず、調合組成化合物が単一相 として全域で作製可能である(とみなせるこ とである)。BサイトにScを含まない他全組成 系ではxが約 0.25 以下では単一相であるが、 それ以上では2相共存する。従って、Bサイ トにScを含む組成系ではBa²⁺とCa²⁺イオンの 大きなイオン半径差を、小さいイオン半径差 とみなすことができるような特別のイオン 配列が機能しているに違いない。

残念ながら本系での全域にわたる単一相 の生成を明確にできていない。図2はそれを 目指して叶わなかった結果である。即ち、図

図 2 図 1 とは異なる実験者によって作製され た(Ba_{1-x}Ca_x)(Sc_{1/2}Nb_{1/2})O₃系焼結体の粉末 X 線回 折図形。 は調合組成よりもBaが多い、 はBa が少ない不純物ペロブスカイトを表す。

2は最強回折3%を縦軸とし極弱回折に注目している。(d)までは単一相の回折のみであるが(e)では第2,3相の回折が認められ、(f)ではそれらの強度が増している。

図2には存在を全く認められないが、未反応Sc2O3粒子が明らかに残留することをBSEならびにEDXで確認している。また、同一条件ながら独立に行った他の二人が、(e)では第2,3相の回折が認められ、(f)ではそれらの強度が増すという全く同じ結果を得ている。加えて、第2,3相の回折もペロブスカイトによるものであり、調合組成よりもBaが多い、およびBaの割合が少ないと見ることができる。従って、これら第2,3相は平衡状態として生成しているのではなく、化学成分混合の不均一に起因して生成していると明らかである。故に、図2の結果は本系にて単一相が生成することと、全く矛盾しない。

3(1) に記した ~ 組成系焼結体比誘電 率の調合組成依存性を図3に示す。前期の次 第により微量の不純物が共存しても、調合組 成に応じた標記組成ペロブスカイトの比誘 電率の組成変化とみなすことができる。理論 密度が約96%以上の焼結体についての測定 値だからである。

図 3 の(Ba_{1-x}Ca_x)(Sc_{1/2}Nb_{1/2})O₃比誘電率は (Ba_{1-x}Ca_x)(Sc_{1/2}Ta_{1/2})O₃系のそれよりも明らか に大きい。他の2種Aサイトでも同様であり、 BサイトにNbを含む方がTaを含む化合物より 比誘電率が大きくなるという、広く知られた 現象と一致する。

図4の縦軸は比誘電率の増加率である。横 軸の端、即ち、xが0と1.0での比誘電率を直 線で結び、各組成xでの比誘電率の同直線の値

 (ε_r) からの増加($\Delta \varepsilon_r$)を ε_r で除す。これにより、 種々組成系での比誘電率増加を同じ物指し により比較できる。固溶体の比誘電率が線形 則になれば、比誘電率増加率がゼロになると いう、代表者らが編み出した規格化の手法で ある。

同図より同類Aサイト置換系でも代表者ら が提唱した経験則を本系でも確かめ、加えて 本系の特徴も明らかになった。即ち、2種Aサイトイオンのイオン半径差により、その差 が大きい(Ba_{1-x}Ca_x)系が極めて大きい比誘電 率増加率を示し、(Ba_{1-x}Sr_x)置換系では最大 15%程度の緩やかな山状、さらにその差が最 小の(Sr_{1-x}Ca_x)系での増加率は微細である。

加えて、(Ba_{1-x}Ca_x)系での極大はxが 0.25 付 近で、増加率が 55%ないし 60%であるが、こ の値は 50%未満であったその他のBサイト置 換系での最大増加率より明らかに大きい。さ らに、その他のBサイト置換系で最大増加率 となるxが 0.25 付近は、各置換系での固溶限 界と一致していた。そのため、xが 0.25 以上 では 2 相が共存し、第 2 相の割合が増えるに 従い、比誘電率も減少した。しかし、本研究 の (Ba_{1-x}Ca_x)(Sc_{1/2}Nb_{1/2})O₃ な ら び に (Ba_{1-x}Ca_x)(Sc_{1/2}Ta_{1/2})O₃系は、単一相しか生成し ないにも関わらず、同じxが 0.25 付近で比誘 電率が最大になった。

3(1)に記した ~ 組成系焼結体 Qf 値の 調合組成依存性を図5に示す。誘電損失、従 って Qf は結晶自体の構造に敏感であると共 に、焼結体微細構造にも敏感である。そのた め、図5に同一組成であるため本来同じ値に なるべき所が、異なった2値であることを含 め、再検討が必要なデータが含まれることを

図 3 (A_{1-x}A'_x)(Sc_{1/2}B'_{1/2})O₃ (A, A' = Ba, Sr, Ca B' = 図 4 図 3 を基に算出した比誘電率の増加率 Nb, Ta)焼結体の比誘電率

図 5 $(A_{1-x}A'_x)(\operatorname{Sc}_{1/2}B'_{1/2})O_3$ $(A, A' = \operatorname{Ba}, \operatorname{Sr}, \operatorname{Ca} B' =$ Nb, Ta)焼結体の*Qf*値

代表者らは認識している。なお、前述は図 5 に限らず図 3 でも同様である。

(Ba_{1-x}Ca_x)(Sc_{1/2}Nb_{1/2})O₃ 系 の *Qf* な ら び に (Ba_{1-x}Ca_x)(Sc_{1/2}Ta_{1/2})O₃系のそれはxが0から0.1 の間に激減している。その後、xとともになべ 底をはうように*Qf*が推移し、xが0.7以上では 急激に再度増大する。Nbを含む系の*Qf*値の方 がTaを含む系のそれより、僅差ながら小さい。

この*Qf*と組成*x*との関係は*B*サイトの種類 を問わず、*A*サイトが(Ba_{1-x}Ca_x)の置換系に共 通している。小さい*x*での図4に見られる比誘 電率の急激な増加を、*A*サイトのBa²⁺を置換し たCa²⁺イオンのガタガタモデルによって代表

図 6 (*A*_{1-x}*A*[']_x)(Sc_{1/2}*B*[']_{1/2})O₃ (*A*, *A*['] = Ba, Sr,Ca *B*['] = Nb, Ta)焼結体の共振周波数温度変化

者らは説明している。このガタガタCa²⁺イオ ンの存在により、誘電分極、従って誘電率が 大きくなることは納得できる。また、このガ タガタCa²⁺イオンは、高周波電界に不十分に しか同期できない荷電体として、誘電損失を 増加させる。従って、(Ba_{1-x}Ca_x)置換系での比 誘電率の急増とQfの急減は、置換により生じ る結晶構造の乱れに伴う二つの現象といえ る。

図 5 の(Ba_{1-x}Sr_x)および(Sr_{1-x}Ca_x)置換系では Nbを含む系の*Qf*値の方が、Taを含む系のそれ よりも明らかに小さい。既知現象をここでも 確かめた。また、図 5 の(Ba_{1-x}Sr_x) 2 置換系で のxの増加に伴う*Qf*の急激な減少は、比誘電率 の増加に対応している。比誘電率の増加(図 4)が(Ba_{1-x}Ca_x)系のように急ではなく、*Qf*の減 少も破壊的ではない。

さらに図 5 の(Sr_{1-x}Ca_x) 2 置換系での*Qf*の小 さい組成変化は、図 4 の比誘電率のわずかな 変化に対応している。

共振周波数温度係数(*TCf*)の組成変化を図 6 に示す。未測定も多いが、(Ba_{1-x}Ca_x)置換系で は図のように比誘電率が極大となる組成で *TCf*も極大になっている。また、(Ba_{1-x}Sr_x)置換 系でも、その勾配までも相関して、比誘電率 が極大となる組成で*TCf*も極大になっている。 加えて、(Sr_{1-x}Ca_x)置換系の*TCf*の組成変化は比 誘電率のそれと同様に小さい。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計5件)

(1)<u>H.Nakano</u>, N.Ishizawa andN.Kamegashira, "In-situ observation of phase transformations in layered perovskite BaEu2Mn2O7" [査読ス\$], J. European Ceramic Society (2009).

(2) "Oxygen-octahedral phonon properties of $xBaTiO_3$ + $(1-x)Ba(Mg_{1/3}Ta_{2/3})O_3$ and $xCa(Sc_{1/2}Nb_{1/2})O_3$ + $(1-x)Ba(Sc_{1/2}Nb_{1/2})O_3$ microwave ceramics", Chih-Ta Chia, Pi-Jung Chang, Mei-Yu Chen, I.-Nan Lin, <u>H. Ikawa</u>, Journal of Appllied Physics, [査読有], 101, pp.084115-1 – 084115-5, (2007).

(3) "Phase Transformation of Barium Titanate Confirmed by Raman Spectroscopy and Powder X-ray Diffraction", <u>H. Ikawa</u>, T. Nakai, S. Higuchi, K. Saitou, and <u>M. Takemoto</u>, *Trans. Mater. Res. Soc. Jpn.*, [查読有], 31[1] 101-104 (2006).

(4) "Editorial", <u>H.Ikawa</u>, H.Ohsato,
M.T.Sebastian, *J. Eur. Ceram. Soc.* [査読無],
26(10-11), pp.1753-1754 (2005).

(5) "Products and Microwave Dielectric

Properties and Abnormally Wide Solid Solution Range of the $(Ba_{1-x}Ca_x)(Sc_{1/2}Nb_{1/2})O_3$ System", Y.Fujii, <u>M.Takemoto</u>, M.Takayama, J.Katagiri, D.Satoh, R.Hirukawa, and <u>H.Ikawa</u>, In *Program Summary and Extended Abstract* of The 12th US – Japan Seminar on Dielectric & Piezoelectric Ceramics, [査読無], pp.267-270, (2005).

〔学会発表〕(計4件)

(1) <u>井川博行、竹本 稔</u>、「異常に広い固溶 域を持つ(Ba_{1-x}Ca_x)(Sc_{1/2}Nb_{1/2})O₃系ペロ ブスカイトマイクロ波誘電体の奇妙な 挙動」、日本セラミックス協会 2009 年 年会、2009 年 3 月 17 日、東京理科大 学(野田キャンパス)

(2) <u>井川博行</u>、藤井友也、<u>竹本稔</u>、「Aサイト置換複合ペロブスカイトセラミックス
 (Ba_{1-x}Ca_x)(Sc_{1/2}Nb_{1/2})O₃のマイクロ波誘電特性」、日本セラミックス協会第19回秋季シンポジウム、2006年9月21日

(3) "Products and Microwave Dielectric Properties of the $(Ba_{1-x}Ca_x)(Sc_{1/2}Nb_{1/2})O_3$

System which has an Abnormally Wide Solid Solution Range", <u>H.Ikawa</u>, Y.Fujii, <u>M.Takemoto</u>, 4th Internal. Conf. Microwave Mater. Their Applica., 12-14 June (2006) Oulu Finland.

(4) "Interrelation between Dielectric Property and Elastic Property of Ceramics of Nominal Composition $(Ba_{1-x}Ca_x)(Mg_{1/3}Ta_{2/3})O_3$ ", <u>H.Ikawa</u>, M.Yamashiro, M.Fukuhara, and <u>M.Takemoto</u>, *The 12th US – Japan Seminar on Dielectric & Piezoelectric Ceramics. Nov.6-9* (2005) Annapolys USA.

6.研究組織

(1)研究代表者井川 博行(IKAWA HIROYUKI)

神奈川工科大学・工学部・教授 研究者番号:30016612

(2)研究分担者

竹本 稔 (TAKEMOTO MINORU)
神奈川工科大学・工学部・准教授
研究者番号:70288215
中野 裕美 (NAKANO HIROMI)
龍谷大学・理工学部・実験講師
研究者番号:00319500