科学研究費補助金研究成果報告書

平成22年6月8日現在

研究種目:基盤研究 研究期間:2006~200	(C) 08			
研究課題名(和文)	自動サイクロトロン共鳴による電子ビーム加速と電力変換システムへの 応用			
研究課題名(英文)	Electron beam acceleration by auto-resonance cyclotron maser and application to power conversion system			
研究代表者				
坂本 慶司 (SAKAMOTO KEISHI)				
独立行政法人日本原子力研究開発機構・核融合研究開発部門・研究主席 研究者番号:90343904				

研究成果の概要:

ミリ波を用いた自動サイクロトロン共鳴加速による電子ビーム加速のシミュレーションを行い、 電力変換システムへの応用を考察した。オーバーサイズの導波管を用いることにより、一様磁 場中でも自動共鳴が保たれること、ビーム電流を高くすることで、短い相互作用長でミリ波が 完全吸収され、簡素なミリ波-DC電力変換器が可能であることを示した。ミリ波を用いた電力 変換システムの概念を提示し、ジャイロトロンを用いた DC-ミリ波変換、長距離伝送系、ミリ 波-DC 変換系、それぞれに高効率が得られることを示し、その実現可能性を示した。

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2006 年度	2, 200, 000	0	2, 200, 000
2007 年度	800, 000	240, 000	1, 040, 000
2008 年度	500, 000	150, 000	650, 000
年度			
年度			
総計	3, 500, 000	390, 000	3, 890, 000

研究分野:工学

科研費の分科・細目:総合工学・エネルギー学

キーワード:プラズマ・核融合、自動サイクロトロン共鳴、ミリ波帯マイクロ波、電子ビーム加速、 ジャイロトロン、電力変換

1. 研究開始当初の背景

大電力ミリ波技術は、核融合研究において、 プラズマ加熱電流駆動のため開発が続けら れ、近年大きな進展を遂げつつある。この技 術の電子加速や、エネルギー伝送技術への応 用の可能性について研究する。これまで、 100GHz 帯大電力ミリ波を用いて加速された 単色エネルギーの電子ビームの研究は、低周 波数におけるクライストロンやマグネトロ ンのような大電力電磁波源が存在しなかっ たため、ほとんど報告されていない。特に、 自動サイクロトロン共鳴は、新しい電子加速 器の概念として数 GHz 帯のマイクロ波を対象 とした研究が行われているが、ミリ波を用い た研究は報告されていない。一方、エネルギ ーの遠隔伝送の研究では、電磁波電力から DC 電力への変換が重要であるが、これまでは 2GHz 帯マイクロ波において、レクテナ等の半 導体を用いた低、中レベルの電力密度での研 究例はあるが、より直進性の高いミリ波を用 いた電力変換は未だ報告されていない。

研究の目的

電子の自動サイクロトロン共鳴と、ミリ波を 媒介とした電力変換システムについて研究 する。ドップラーシフトを考慮した磁場中の 電子のサイクロトロン周波数が電磁波の近 傍にあるときに、電子は共鳴的に加速される。 一般に、電子が加速されエネルギーが高くな ると、相対論効果により電子の質量が増加し、 サイクロトロン周波数が小さくなるために 共鳴条件が外れ減速に転じる。しかし、平面 波の場合、サイクロトロン共鳴条件が満たさ れると、電子エネルギーの増加にかかわらず 共鳴が保たれる、いわゆる自動サイクロトロ ン共鳴が満たされ、電子が高エネルギーレベ ルまで加速されうる。研究の目的は、現実の 実験系では平面波と異なる条件、すなわち導 波管内で電磁波は伝送されるため、この条件 における加速特性を明らかにすること、及び 電子の運動エネルギーを DC 電力エネルギー へ変換するために適した系の考察を行うこ とである。

このためには具体的に、大電力ミリ波を媒介 とした電力送信システムとして、次の複数の システムから構成される系を研究する。(1) ジャイロトロンを用いた DC 電力からミリ波 への変換系、(2) 導波管あるいは準光学伝 送によるミリ波エネルギー伝送系、(3) ミ リ波受信系、(4) ミリ波による電子ビーム 加速系、(5) 加速された電子ビーム電力の 外部回路への電力回収系、である。これらの 妥当性について評価することも大きな目的 である。

3. 研究の方法

これまで核融合研究の中で得られた大電力 ミリ波技術を利用し、電子加速、エネルギー 変換に関する研究を行う。まず、自動サイク ロトロン共鳴を計算するためのコードを製 作し、シミュレーションにて、磁場中のミリ 波一電子ビームの相互作用の研究を行う。こ こで、自動サイクロトロン共鳴条件、磁場が 非一様の場合の加速条件、空胴共振器内での 加速条件などについてその特性を評価する。 次に、"2."で述べた各目的につき、それぞれ の研究方法を述べる。

(1)これまで我々の研究グループで開発した 170GHz ジャイロトロンを用い、送信側ミリ波源としてその高効率発振特性、安定性につき実験的研究を行う。

(2)この170GHz ジャイロトロンをエネル ギー源とし、導波管を用いてその大電力エネ ルギー伝送特性の実験を行う。導波管には、 内径 63.5mm のコルゲート導波管を用いる。 また、導波管終端から放出されるミリ波を、 複数のミラーを用いて空間伝送させ、ターゲ ットに当てその電力分布を測定し、そこから RF ビーム及び導波管内の伝送モードを数値 解析的に同定する。

(3)準光学伝送されたミリ波ビームを、相 互作用系として受信側ジャイロトロンに入 射し、ジャイロトロンに内蔵されたミラー系、 モード変換器を介して、ミリ波—電子ビーム の相互作用部に入射する。ここで、導入する ためのミラー系の設計及び製作を行い、大電 力ミリ波でその特性を実証する。

(4)受信側ジャイロトロンに低速の電子ビ ームを発生させ、ミリ波を入射することによ り、その電子とミリ波の相互作用、特に加速 の有無を調べる。

(5)加速された電子ビームの運動エネルギーを、減速電界を印加することにより静電的に回収する外部回路を設計し、シミュレーションによりその挙動を調べる。

4. 研究成果

(1)電子加速のシミュレーション 自動サイクロトロン共鳴による電子加速の シミュレーションをすすめた。まず、170GHz のTE₁₁モードの電磁波が、直径 10mmの導 波管中を伝播しながら電子ビームを加速す る例を考察する。導波管径が波長に比べて大 きいため、TE₁₁モードの管内波長は自由空間 波長とほぼ同じであり、自由空間中の平面波 とほぼ同じ特性が期待できる。図1(a)は、相 対論的ファクタ(γ)で表した電子エネルギー と電子ビーム電力の軸方向変化を示してい る。ここで、初期電子ビームは、エネルギー は13.1keVの直進ビームで、軸磁場が 4.9T、 ビーム電流が 1A、電磁波電力が 50MW であ る。184mm でエネルギーは 1MeV に達して

図 1 (a) 電子ビームの軸方向変化のシミ ュレーション結果。170GHz/50MW の TE₁₁モードのミリ波を直径 10mmの導波 管に伝送させた場合。軸磁場は 4.9T、電 子ビームの初期エネルギーは 13.1keV、 電流 1A.

図 1(b) 電子の規格化運動量の軸方向変 化。計算条件は(a)と同じ。

図 2 電子ビームの軸方向変化のシミ ュレーション結果。170GHz/50kW の TE₁₁モードのミリ波を直径 10mm の導 波管に伝送させた場合。軸磁場は 4.85T、電子ビームの初期エネルギーは 11keV、電流 20A.

いる。相対論ファクタが1.025から3まで変 化しているが、共鳴が持続され加速され続け ていることがわかる。初期電子エネルギーに 回転成分はないため、一様に加速され、加速 後も単色エネルギー分布となる。図 1(b)は、 mc で規格した電子運動量の軸方向 Upara、回 転方向成分 Uperp である(m:電子の質量、c: 光速)。回転方向の運動量とともに、軸方向の 運動量も増加し、ピッチファクタ(Uperp/Upara) はエネルギーの増加とともに下がる様子が 分かる。一方、導波管の半径を波長程度に小 さくした場合は分散効果により波数は単純 な(角周波数/光速)ではなくなる。この場 合、共鳴条件を維持させるために電子のエネ ルギーの増加に対応して軸磁場を電子の進 行方向に増加させる必要がある。一様磁場の 場合で、共鳴からはずれ、加速には至らない。 高いエネルギーまでの加速性能を得るには、

+分な条件設定、すなわち磁場の正確な設定 が重要である。

次に、ミリ波をエネルギー変換器に利用す る場合について考察した。ポイントとなる事 項は、入力電磁波の電力を高い効率で電子ビ ームのパワーに変換すること、加速された電 子のエネルギー分布が小さくできる限り単 色であることである。また、加速距離は短い ほうがシステムの簡素化、軸磁場の精度確保 に有利である。この場合、加速される電子ビ ームのエネルギーは高い必要はない。電流 Ib の電子ビーム中の電子すべてがエネルギー eVfまで加速されたとすると、電圧 Vfの逆バ イアス電圧を電子ビームに印加することに より 0V まで減速され、原理的にはすべての 電子ビームの電力を回収することができる からである。図2は、初期電圧 11kV、電流 20A の電子ビームを直径 10mm の導波管中 に 170GHz の 50kW の TE₁₁モードのミリ波 で加速した場合の結果である。RF 電力は距 離 92mm ですべて吸収され、その結果、電子 ビーム電力は 50kW 増加した。合計電力は同 ーで、RF 電力がすべてビーム電力に変換さ れたことがわかる。電子ビームは 13.5kV ま で加速され、エネルギー変化は 2.5kV の上昇 である。相対論ファクタとしては0.00685の 変化であるため、短距離であれば一様磁場で も共鳴が外れることはなく、特に磁場を軸方 向に調整する必要もない。また、加速された 電子ビームも単色エネルギーであるため、原 理的にほぼ 100%の投入電力が回収できる。 このように、電力変換器という視点で電子加 速を考えた場合、ある程度電流を大きくし、 加速エネルギーを低く押さえる方がシステ ム設計上、好ましいと考えられる。

(2) 電子ビーム加速、電力回収系のモデル 設計

図3に全体概念図を示す。電子銃からの直線 電子ビームを外部から窓を通じて入射され たRFを相互作用系でサイクロトロン共鳴加 速し、コレクタと相互作用部に印加された逆 バイアスの静電圧で減速する。ミリ波で加速 された電子ビームのエネルギー分 Vd と電子 ビーム電流 Ibの積が、使用できる電力となる。 ここで、電子ビームの初期電圧を Vgun、加速 後の電圧を Vaceとすると、Vd=Vace-Vgunであ り、逆バイアスとして印加できる電圧となる。 負荷とのインターフェースは DC/DC コンバ ーターを用いる。電流 Ib は電子銃で、またエ ネルギー回収電圧は入力 RF で制御される。

(3) DC 電力—ミリ波電力変換

全体システムを構成する上で、最初のエネ ルギー源となるミリ波の生成は重要な要素 となる。このミリ波は、DC 電力から発振器 を用いて生成される必要がある。この DC 電 力からミリ波への電力変換器は、現在、変換 効率、出力レベル、安定性から考慮して現在

図 3 ミリ波—DC 電力変換器の概念図。 初期電子ビームを電子銃から引き出し、 11keV に加速して相互作用部において RF(ミリ波)で約 2.5keV 加速する。コレク タ全面のポテンシャルを乗り越え電流が 回路に流れる。DC/DC コンバーターでイ ンピーダンス変換し、負荷につなげ電源と して機能させる。

ジャイロトロンのみである。今回の実験で使 用したジャイロトロンは、我々で開発した高 さ約 3m、重量 800kg の電子管である。超伝 導コイルに挿入され、ジャイロトロンの心臓 部となる共振器部に約 6.6T の軸磁場出力を 印加する。加速電圧は約 70kV、電流 50A 以 下の回転電子ビームを磁場にそって共振器

に打ち込み、電子サイクロトロン共鳴メーザ ー(CRM)効果で発振を起こす。発生した電 磁波は、ジャイロトロン内でモード変換され、 出力窓を通して外部に出力される。図4は、 RF出力、及び、DC入力からRF出力への変 換効率の電子ビーム電流依存性である。出力 は約1MWで総合変換効率は最大60%(出力 0.6MW時)を達成した。送信側のRF電力発 生器としての役目は十分担えるレベルであ る。また、印加磁場を変えることにより、発 振モードを変え、発振周波数をステップ状に 変え、オペレーション領域を広げることも可 能である。また、印加電圧を調整することに

図5 受信ジャイロトロンへのミリ波 入射系。

より、出力調整、周波数の微調整が可能であ ることを実証した。これらは、電子加速条件 の調整に有効である。

(4) ミリ波伝送系

出力されたミリ波電力は、電子加速系まで 高効率で伝送されなければならない。これに は、導波管を用いる方式と、準光学方式があ る。ここでは、ジャイロトロンからの出力を 違波管で伝送する方式を議論する。まず、出 力窓から直線偏波で出力されたミリ波ビー ムを準光学整合回路に置いた2枚のミラー を用い、コルゲート導波管に結合させる。ミ ラー表面はミリ波の形状と位相を補正する ために、非線形形状を有しており、導波管に HE11モードが励起される。伝送実験は、方向 変換のため7個のマイターベンド(準光学方 式のミラーで構成される)を有する約40mの ミリ波伝送系で行った。96%のジャイロトロ ン出力が導波管に導入され、そのうち約95% が基本モードである HE11 モードに結合され ることを実証した。その結果、約90%のジャ イロトロン出力が伝送系終端まで伝送され た。

併せて、RF 電力の放射実験(空間エネル ギー伝送)実験を行った。コルゲート導波管 中の HE₁₁モードは、ガウス型に極めて近い 電力分布をしており、そのため導波管からガ ウス型ビームを放射させることができる。放 射された RF ビームはミラーを介すことによ り、放射角度を調整できる。ターゲットに放 射された RF ビームによる温度上昇の測定し、 ミラー角度の制御によりガウスビームの位 置が設計通り移動していることを確認した。 さらに、より遠方に伝送させるため、2枚の ミラーを用い、断面形状の大きい平行ビーム をつくり、放射実験を行った。伝送されたビ ームは受信用ミラーで集光され、導波管に導 入され、遠隔エネルギー伝送を実証した。

(5) 電子ビーム加速系

170GHz帯ミリ波を用いた電子加速の実験 システムを構築した。前述のとおり、ジャイ ロトロンで発振した電磁波を導波管で長距 離伝送する。電磁波・電子ビーム相互作用系に は、空胴共振器を用いる。具体的には、受信 用ジャイロトロンを用いてミリ波電力のビ ーム電力への変換実験を行う。図5は、RF ビームの導入用ミラー系である。ガウス型電 磁波ビームを、位相補正鏡を介して出力窓か ら逆に入力し、受信側ジャイロトロンに内蔵 されたモード変換器を介して共振器に共振 モードを励起させる。ここに、回転成分の少 ない直進電子ビームを入射することにより、 低エネルギー電子ビームに電磁波を吸収さ せ、電子加速を行う。実験では 100kW 以下 のレベルの電磁波(1ミリ秒)を導波管で伝 送し、位相補正鏡を用いて直線偏波のまま受 信側ジャイロトロンに入射した。送信側のジ ャイロトロンでアノードーカソード間の電 圧制御で発振のタイミング、パルス幅を調整 する。受信側ジャイロトロンの電子ビームに 入射 RF を同期させ、電子加速の特性を調べ る。加速の有無は、受信ジャイロトロンの逆 加速電圧の深さ、あるいはコレクタ部で発生 する X 線の変化として表れる。 送信側ジャイ ロトロンのミリ波(1ミリ秒)と受信側ジャ イロトロン側の電子ビームの同期に成功し、 RF 吸収特性に受信側ジャイロトロンの明確 な磁場依存性を確認した。現在、その実験を 続行中である。この研究において、ミリ波を 用いたエネルギー伝送・電力変換システムの 概念を構築でき、実験システムを構築できた ことは今後の研究開発ステップにつながる 大きな成果である。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計12件) ① <u>K.Sakamoto</u>, <u>A.Kasugai</u>, K.Kajiwara, <u>K. Takahashi</u>, Y. Oda, K. Hayashi, N. Kobayashi, "Progress of the high power 170GHz gyrotron in JAEA", Nuclear Fusion, 49, 095019 (2009).

② K.Kajiwara, K.Sakamoto, "Long pulse and high power repetitive operation of the 170GHz ITER Gyrotron", Plasma and F usion Research, 4, p.6-p.8 (2009). 査 読有

③ R.W.Callis, J.Doane, H.Grunloh, K.Ka jiwara, <u>A.Kasugai</u>, C.Moeller, Y.Oda, R. Olstad, <u>K.Sakamoto</u>, <u>K.Takahashi</u>, "Desig n and testing of ITER ECH&CD transmissi on line components", 84, p.526-p.529 (2 009). 査読有

④ K.Kajiwara, <u>K.Takahashi</u>, N.Kobayashi, A.Kajiwara, <u>K.Sakamoto</u>, "Design of a h igh power millimeter wave launcher for EC H&CD system in ITER", Fusion Enginee ring and Design, 84, p.72-p.77 (2009). 査読有

⑤ T.Kariya, <u>R.Minami</u>, T.Imai, <u>K.Sakamo</u> <u>to</u>, K.Kubo, T.Shimozuma, H.Takahashi, S. Itoh, T.Mutoh, Y.Mitsunaka, Y.Endo, H.S hidara, N.Murofushi, Y.Sakagoshi, H.Yas utake, Y.Okazaki, "Development of 28GHz and 77GHz 1MW Gyrotron for ECRH of mag netically confined plasma", Fusion Scie nce and Technology, 55, p.91-p.94 (2009). 査読有

⑥ Y.Oda, T.Shibata, K.Komurasaki, <u>K.Takahashi</u>, <u>A.Kasugai</u>, <u>K.Sakamoto</u> "Thrust performance of Microwave Rocket under r epetitive pulse operation", Journal of Propulsion and Power, 25, pp. 118-122 (2009). 査読有

⑦ Y.Oda, K.Kajiwara, <u>K.Takahashi</u>, <u>A.Ka</u> <u>sugai</u>, <u>K.Sakamoto</u>, K.Komurasaki, "In Tu be Shock Wave Driven by Atmospheric Mil limeter-Wave Plasma", Japanese Journal of Applied Physics, pp. 118-123 (2009). 査読有

⑧ <u>A.Kasugai</u>, <u>K.Sakamoto</u>, <u>K.Takahashi</u>, K.Kajiwara, N.Kobayashi, "Steady-state operation of 170GHz 1MW gyrotron for IT ER", Nuclear Fusion, 48, 054009 (2008). 査読有

⑨ <u>K. Takahashi</u>, K. Kajiwara, N. Kobayashi, <u>A. Kasugai</u>, <u>K. Sakamoto</u>, "Improvement de sign of an ITER equatorial launcher", 4
8, 054009 (2008). 査読有
⑩ Y. Oda, T. Shibata, K. Komurasaki, K. Ta

<u>kahashi</u>, <u>A. Kasugai</u>, <u>K. Sakamoto</u>, et al.,

"A thrust generation model of microwa ve rocket", J. Space technology and Sci ence", 20, p.30-p.35 (2007). 査読有 <u>K. Sakamoto</u>, <u>A. Kasugai</u>, <u>K. Takahashi</u>, R. Minami, N. Kobayashi, K. Kajiwara, "Ach ievement of robust high-efficiency 1MW oscillation in the hard-excitation regi on by a 170GHz continuous wave gyrotron ", Nature Physics, 3, p. 411-414 (2007). 查読有

① <u>A.Kasugai</u>, A.Kajiwara, <u>K.Takahashi</u>,
 N.Kobayashi, <u>K.Sakamoto</u>, "High power High efficiency operation of 170GHz gyrot ron", Fusion Science and technology",
 51, p.213-216 (2007). 査読有

〔学会発表〕(計9件)

① <u>K. Sakamoto</u>, K. Kajiwara, A. Kasugai, Y. Oda, K. Takahashi, N. Kobayashi, "Progress of the high power gyrotron development in JAEA (Invited)", IEEE The 34th Int. Conf. on Infrared, Millimeter, and Terahertz waves, Busan, Korea (2009).

② Y.Oda, K.Kajiwara, <u>K.Takahashi</u>, <u>A.Kasugai</u>, <u>K.Sakamoto</u>, et al., "Gyrotron beam coupling into corrugate waveguide", IEEE The 34th Int.Conf. on Infrared, Millimeter, and Terahertz waves, Busan, Korea (2009).

③ Y.Oda, K.Kajiwara, <u>K.Takahashi</u>, <u>A.Kasugai</u>, <u>K.Sakamoto</u>, "Gyrotron Beam Coupling Method into Corrugated Waveguide", The 18th Topical Conference on Radio Frequency Power in Plasmas, Ghent, Belgium (2009).

(4) Y.Oda, K.Kajiwara, <u>K.Takahashi</u>, <u>A.Kasugai</u>, <u>K.Sakamoto</u>, K.Komurasaki, "A structure of breakdown plasma by a high power millimeter wave beam", International Congress on Plasma Physics Karlsrhue, Germany (2008).

(5) <u>K. Sakamoto</u>, K. Kajiwara, <u>A. Kasugai</u>, T. Kobayashi, Y. Oda, <u>K. Takahashi</u>, N. Kobayashi, S. Moriyama, "High power gyrotron development for fusion application", 33rd International Conference on Infrared, Milimeter, and Terahrtz Waves, Pasadena, USA (2008).

(6) <u>K. Takahashi</u>, K. Kajiwara, N. Kobayashi, <u>A. Kasugai</u>, Y. Oda, T. Kobayashi, S. Moriyama, <u>K. Sakamoto</u>, "Development of quasi-optical transmission line for ITER equatorial EC launcher", 25th Symposium on Fusion Technology, Lostock, Germany (2008).

<u>A.Kasugai</u>, <u>K.Sakamoto</u>, <u>K.Takahashi</u>,
 K.Kajiwara, Y.Oda, N.Kobayashi,

"Demonstration of 1MW wuasi-CW operation of 170GHz gyrotron and progress of EC technology", 22nd IAEA Fusion Energy Conference, Geneva, Switzerland (2008). (8) <u>K. Sakamoto</u>, K. Kajiwara, <u>A. Kasugai</u>, K. Takahashi, T.Kobayashi, Y.Oda, " A high-power A. Isayama, S. Moriyama, gyrotron and high-power mm wave technology for Fusion Reactor", 18th International Toki Conference, Toki, Japan (2008). (9) K. Sakamoto, et al., "Demonstration of high efficiency 1MW oscillation by 170GHz CW gyrotron", Proc. of the joint conference on infrared and mm waves and $15^{\rm th}$ Int. conf. on terahertz electronics, p. 708, Cardiff, UK (2007).

〔図書〕(計2件)

 <u>K. Sakamoto</u>, et al., "STRONG MICROWAV ES: SOURCE AND APPLICATIONS (High power 170GHz gyrotron development in JAEA)", Russian Academy of Science, pp. 7-14.
 <u>K. Kajiwara</u>, (<u>K. Sakamoto</u>), et al., "E lectron Cyclotron Emission and Electron Cyclotron Resonance Heating (Calculation of the RF propagation for the ITER equatorial ECH/ECCD launcher)", World Scientific Publishing Co. Pte. Ltd, pp. 440-445 (2009).

6. 研究組織

(1)研究代表者 坂本 慶司 (SAKAMOTO KEISHI) 独立行政法人日本原子力研究開発機構· 核融合研究開発部門·研究主席 研究者番号:90343904

(2)研究分担者 春日井 敦 (KASUGAI ATSUSHI) 独立行政法人日本原子力研究開発機構· 核融合研究開発部門·研究主幹 研究者番号:70354636

高橋 幸司 (TAKAHASHI KOJI) 独立行政法人日本原子力研究開発機構· 核融合研究開発部門·研究副主幹 研究者番号:70354644

南 龍太郎 (MINAMI RYUTARO) 国立大学法人 筑波大学プラズマ研究セン ター・講師 研究者番号:70370476

(3)連携研究者 なし。