様式 C-19

科学研究費補助金研究成果報告書

平成21年5月14日現在

研究種目:若手研究(A)
研究期間:2006~2008
課題番号:18686008
研究課題名(和文) リアルタイム高機能テラヘルツ分光イメージング法の開発
研究課題名(英文) Real-time terahertz spectroscopic imaging system
研究代表者
安井 武史(YASUI TAKESHI)
大阪大学・大学院基礎工学研究科・助教
研究者番号:70314408

研究成果の概要:

テラヘルツ(THz)分光イメージングは、成分分析型の内部透視手段として各応用分野の 利用が期待されているが、極めて長い測定時間が実用化への障害となっていた。本研究で は、電気光学的時間-空間変換による実時間 THz 時間波形計測と線集光 THz 結像光学系に よる実時間 THz ラインイメージングを複合した THz カラースキャナーの開発を行った。 その結果、測定時間が従来法の 1/10,000 以下まで短縮され、世界で初めて動体サンプルの THz 分光イメージングに成功した。

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2006年度	4, 500, 000	1, 350, 000	5, 850, 000
2007年度	14, 700, 000	4, 410, 000	19, 110, 000
2008年度	3, 500, 000	1,050,000	4, 550, 000
年度			
年度			
総計	22, 700, 000	6, 810, 000	29, 510, 000

研究分野:工学

科研費の分科・細目:応用物理学・工学基礎 応用光学・量子光工学 キーワード:非破壊検査、フェムト秒レーザー、分光、テラヘルツ、非線形光学効果

1. 研究開始当初の背景

最近、科学技術立国再生に向けた国際競争 力強化のため日本が今後10年以内に重点 的に開発に取り組む『国家基幹技術10大戦 略』が、文部科学省の諮問機関である科学技 術・学術審議会から提示された。この内の1 つとして、『電磁波のテラヘルツ波(THz 波;波長 30µm ~ 3mm または周波数 0.1 ~10THz)による計測・分析技術』が取り上 げられており、その狙い・効果には『THz 波 の透過性を生かした病理組織診断、郵便物内 の麻薬・爆薬の識別』が挙げられている。こ のような THz 計測分析技術の中核的計測手 法として、THz 計測に特徴的な内部透視・分 光・イメージングという3つの要素技術を複 合した THz 分光イメージングがある。THz 分光イメージングでは、内部透視イメージを THz 周波数毎の色付きカラー画像(THz 分 光画像)として測定し、特徴的な THz 指紋 スペクトルと比較することにより成分分析 イメージングが可能なため、従来の内部透視 手段(X線、超音波他)に替わる非侵襲・非 接触リモートな成分分析型内部透視イメー ジング手段(『どこに』『何が』あるかを見分 2. 研究の目的

これまでに THz 分光イメージングの有用 性は研究室レベルで報告されているものの、 基本的に点計測に基づいているため、時間遅 延やサンプル移動といった複数の機械的走 査機構に伴う長い測定時間(数十分~数時間 以上)により測定対象が静止物体のみに制限 され、産業応用分野における実用化が大きく 制限されてきた。このような現状から、THz 分光イメージングの高速化が強く望まれて いる。従来研究では、機械的走査機構の高速 化という観点から計測時間の短縮化が試み られているが、機械的走査機構に基づいてい る限りは、イメージング計測の完全なリアル タイム化は困難である。

ここで、THz 波の光としての並列処理性を 上手く利用すると、機械的走査機構の省略に よる、THz 分光イメージングのリアルタイム 化が実現できる。本研究では、電気光学的時 間・空間変換と線集光 THz 結像光学系を複 合した実時間 2 次元時空間 THz イメージン グを THz 分光イメージングに適用すること により、レーザー単ーショットでの計測が可 能な THz カラースキャナーの開発を行う。

3. 研究の方法

2 次元自由空間電気光学サンプリング法 (2D-FSEOS) とは、THz ビームとプローブビ ーム(レーザービーム)を電気光学結晶に対 して共軸に入射することにより、電気光学ポ ッケルス効果を介して、THz ビームの空間電 場分布をレーザービームの空間強度分布に 変換する手法である。一方、非共軸 2D-FSEOS では、THz ビームとプローブビームを非共軸 入射配置とすることにより、THz パルスの電 場時間波形をプローブビームの空間強度分 布に変換することが可能になる。測定原理を 図1に示す。ここで、THz ビームはある時間 遅延を有する正負の電場ピークから成る THz パルス信号とする。THz ビームとプローブビ ームは THz 波検出用の電気光学結晶にある交 叉角で非共軸に入射される。THz パルス信号 の2つの波面(実線及び波線)とプローブビ ーム波面は、プローブビーム断面の空間的に 異なる位置で重なる。ここで、THz ビームと プローブビームの伝搬速度がプロ-ブビーム 伝搬方向に関して等しいとすると、その波面 の重なりは空間的に同じ位置を保ったまま 電気光学結晶中を伝搬していくことになる。 その結果、THz パルスの時間波形がプローブ ビーム断面の空間複屈折量分布に変換され ることになる。偏光子ペアによって空間複屈 折量分布から空間強度分布に変換された THz パルス波形情報は、結像レンズを介してライ ンセンサーによって検出される。

実験装置図を図2に示す。フェムト秒チタ ン・サファイア再生増幅器からのレーザー光 を ZnTe 結晶(ZnTe1)に入射することにより、 高強度 THz パルスを発生させる。サンプルを 透過した THz パルスとプローブパルスを THz 検出用 ZnTe 結晶 (ZnTe2) に非共軸入射する ことにより、THz パルス電場の時間波形がプ ローブパルスの空間複屈折量分布に変換さ れる(電気光学的時間-空間変換)。クロスニ コル配置の偏光子ペア (P, A) によってプロ ーブ光の空間強度分布に変換された THz パル ス電場時間波形は、結像レンズ(L3)を介し て高速 CMOS カメラの水平座標に展開される。 -方、CMOS カメラの垂直座標は1次元イメー ジングに利用可能であるので、円筒 THz レン ズ(CL)を用いて THz ビームをサンプルに線 集光し、それを THz レンズペア(L1, L2) で ZnTe2 に結像することにより、サンプルの1 次元 THz イメージを CMOS カメラの垂直座標 に展開する。このように、水平座標に時間軸、 垂直座標に空間軸が展開された2次元時空間 THz イメージを、高速ロックイメージング検 出する(500fps)。最終的に、2次元時空間 THz イメージの時間軸(水平座標)を高速フ ーリエ変換することにより、0.1~3THz を 29GHz ごとに分割した 110 枚の THz 分光ライ ンイメージを実時間で得る。本手法では、THz 線集光ラインを用い、一般のカラースキャナ ーと同じくラインの動き(または測定対象の 動き)に合わせて実時間でラインイメージを 測定するので、移動物体の2次元 THz カラー 画像の取得も可能になる。

4. 研究成果

まず、テストサンプルとしてメタルホール アレイ(MHA)を用いて基本特性評価を行っ た。MHA は THz 帯フォトニック結晶の1つで あり、空孔率を調節することにより、透過周 波数が選択可能な THz 帯バンドパスフィルタ ーとして利用できる。今回は、空間的に異な る透過特性を有する4分割 MHA (透過周波数 =0.2THz, 0.4THz, 0.8THz, 1.6THz;図3)を 作成し、ステージで一方向に連続移動 (1mm/sec) させながら測定を行った(測定 領域 20mm*20mm、測定時間 20 秒)。図4は、 4分割 MHA の4つの透過周波数における THz 分光画像(232pixel*200pixel)を示してお り、4 分割 MHA のスペクトル特性を反映した 結果が得られているのが分かる。イメージの クロストークは、4 分割 MHA 自体の透過スペ クトル特性によるものである。従来の点計測 型 THz-TDS イメージング装置とピクセルレー ト(=総ピクセル数/測定時間)を比較すると、

図 4 4 分割 MHA の測定結果(サン プル移動速度=1mm/sec)

THz カラースキャナーが 100~10,000 倍近く 高いことになる。図5は移動速度を10mm/sec に増加した場合の測定結果(測定時間2秒) を示しており、測定 SN 比は低下しているも のの、同様な結果が得られていることが分か る。このようにして、世界で初めて動体サン プルの計測に成功した。

図 5 4 分割 MHA の測定結果 (サン プル移動速度=10mm/sec)

次に、ヒト歯牙切片の計測を行った。図 6 は測定結果を示しており、各周波数において 特徴的な THz 分光画像が得られていることが 分かる。硬組織である歯牙は、エナメル質と 象牙質から成り、その主要成分は無機質のハ イドロキシアパタイト (HOA) である。エナ メル質の 96%は HOA であるが、象牙質には 20% ほど有機質 (コラーゲンなど) が含まれてい る。また、象牙質とエナメル質の境には球間 区 (石灰化の不十分な部分) がある。このよ うに局在した HOA の結晶構造と THz 波の相互 作用により、特徴的な THz 吸収が現れたと考

図6 ヒト歯牙切片の測定結果

えられる。

また、生体以外にも、半導体 IC (図7) や 医薬品を始めとした各種工業製品の非破壊 検査や品質評価にも適用可能であり、産業分 野への応用が期待される。

図7 半導体 IC の測定結果

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

- 〔雑誌論文〕(計8件)
- <u>安井武史</u>, "テラヘルツ波検査技術の進展", 超伝導 Web21,2009 年2月号, 10-12, 2009, 査読無
- ② S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and <u>T. Yasui</u>, "Terahertz spectrum analyzer based on a terahertz frequency comb", Optics Express, 16, 13052-13061, 2008, 査読 有.
- ③ <u>T. Yasui</u>, K. Sawanaka, A. Ihara, E. Abraham, M. Hashimoto, and T. Araki, "Real-time terahertz color scanner for moving objects", Optics Express, 16, 1208-1221, 2008, 査読有.
- ④ <u>安井武史</u>、安田敬史、荒木勉, "テラヘル ツ波を用いた塗膜モニタリング技術", 塗装工学, 43, 389-397, 2008, 査読有.
- ⑤ T. Yasuda, T. Iwata, T. Araki, and <u>T. Yasui</u>, "Improvement of minimum paint film thickness for THz paintmeters by multiple regression analysis", Applied Optics, 46, 7518-7526, 2007, 査読有.
- ⑥ <u>安井武史</u>, "テラヘルツ周波数コムの発生 及び検出", レーザー研究, 35, 627-632, 2007, 査読有.
- ⑦ T. Yasuda, <u>T. Yasui</u>, T. Araki, and E. Abraham, "Real-time two-dimensional terahertz tomography of moving objects", Optics Communications, 267, 128-136, 2006, 査読有.
- 8 <u>T. Yasui</u>, Y. Kabetani, E. Saneyosh, S.

Yokoyama, and T. Araki, "Terahertz frequency comb by multi-frequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy", Applied Physics Letters, 88, 241104, 2006, 査読 有.

〔学会発表〕(計6件)

- ① <u>T. Yasui</u>, R. Nakamura, A. Ihara, S. Yokoyama, H. Inaba, K. Minoshima, and T. Araki, "Terahertz spectrum analyzer for precise frequency measurement of CW THz source", International Workshop on Terahertz Science and Technology, 2009/3/10, Santa Barbara, USA.
- (2) <u>T. Yasui</u>, K. Sawanaka, A. Ihara, E. Abraham, and T. Araki, "Terahertz color scanner for moving object", EOS Annual Meeting 2008: Topical meeting of Terahertz Science and Technology, 2008/9/29, Paris, France.
- ③ <u>T. Yasui</u>, Y. Kabetani, S. Yokoyama, and T. Araki, "Real-time, terahertz impulse radar based on asynchronous optical sampling", Joint 33rd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, 2008/9/15 Pasadena, California, USA.
- ④ <u>T. Yasui</u>, K. Sawanaka, A. Ihara, and T. Araki, "Real-time, one-dimensional terahertz time-domain spectroscopic imaging of moving object", Joint 32nd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, 2007/9/3, Cardiff, England.
- (5) <u>T. Yasui</u>, Y. Kabetani, S. Yokoyama and T. Araki, "Terahertz frequency-domain spectroscopy referring to as terahertz frequency comb", Optical Terahertz Science and Technology, 2007/2/19, Orlando, USA.
- (6) <u>T. Yasui</u>, T. Yasuda, K. Sawanaka, and T. Araki, "Noncontact terahertz paintmeter for real-time two-dimensional cross-section imaging of paint film thickness", 9th European Conference on Non-Destructive Testing, 2006/9/26, Berlin, German.

〔図書〕(計1件)

① <u>安井武史</u>, NGT コーポレーション社, "テ ラヘルツ技術総覧(分担執筆)", 2007, 389-393 および 450-456.

[その他]

- ○報道関連情報(計4件)
- 『テラヘルツ波で検査/阪大、電波の乱れ 利用/食品の混入農薬や危険物』日経産業 新聞 第11 面(2008/3/19).
- ② 『動体測定可能に/阪大、"カラースキャナー"開発/テラヘルツ波利用/荷物検査など応用』,日刊工業新聞第22面(2008/3/13)
- (3) "Speedy and Colorful Terahertz Scanning/ Real-time imaging technique permits investigation of objects in motion", PHOTONICS SPECTRA, 42, 25-28, 2008.
- ④ 『驚きの透視パワー 不思議の波 テラヘルツ』, NHK 教育テレビ サイエンスゼロ (2007/2/17 放送).
- ○賞罰(計2件)

 <u>安井武史</u>, 2009 年度応用物理学会光学論 文賞, Real-time terahertz color scanner for moving objects, Optics Express, 16, 1208-1221, 2008.

② <u>安井武</u>史,橋本守,荒木勉,日本機械学 会船井賞,『テラヘルツ・カラースキャナ 一の開発』

〇ホームページ

http://sml.me.es.osaka-u.ac.jp/araki_lab/re search/thz/index.html

- 6. 研究組織
- (1)研究代表者
 安井 武史(YASUI TAKESHI)
 大阪大学・大学院基礎工学研究科・助教
 研究者番号:70314408