科学研究費補助金研究成果報告書

平成21年5月18日現在

研究種目:若手研究(A) 研究期間:2006~2008 課題番号:18686074 研究課題名(和文)シュレッダーダストからの鉄、銅資源回収プロセスの構築 研究課題名(英文) Development of elemental technology on recovery of iron and copper resource from shredder-dust 研究代表者 中里 英樹(NAKAZATO HIDEKI) 大阪大学・大学院工学研究科・准教授 研究者番号:30283716

研究成果の概要:シュレッダーダストから鉄、銅資源を分離回収するために必要となる要素技術の開発を行った。溶鉄中に溶解すると有害である Cu について、2 液相分離を利用した効果的な除去方法について検討した。希土類元素 Nd を添加することで溶鉄中に溶解する Cu を固定・無害化できることを見い出した。また、円筒型容器中に円柱状の物体を置くことにより、気柱渦の生成を抑制できることを見い出し、2 液相液体を高速かつ完全分離できる排出方法を明らかにした。

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2006年度	11, 800, 000	3, 540, 000	15, 340, 000
2007年度	5, 800, 000	1, 740, 000	7, 540, 000
2008年度	1, 900, 000	570, 000	2, 470, 000
年度			
年度			
総計	19, 500, 000	5, 850, 000	25, 350, 000

研究分野:工学

科研費の分科・細目:総合工学・リサイクル工学 キーワード:再資源化

1. 研究開始当初の背景

シュレッダーダスト処理方法の一つとし て、直接溶融プロセスを利用したリサイクル が提案されている。溶融後のメタルは約 Fe 70%, Cu 20%の組成を有し、資源リサイクル の観点から、鉄および銅資源として回収し有 効利用できることが望ましい。Fe-Cu 2元系 は全組成にわたって均一液相を有するが、C, Si, Bなどを添加することによってFe-rich 相 と Cu-rich 相に 2 液相分離し、廃棄物からの 鉄および銅資源の効率的な回収法として期 待できる。そこで、本研究では、Fe-Cu 2 液 相分離を利用して、シュレッダーダストから 鉄および銅を回収し、再資源化するプロセス を実現するために必要な要素技術として、 「液体排出時の自由渦の発生防止方法およ び2液相を効率的に分離回収する方法」、な らびに「鋼中で安定な銅化物を生成させ、鋼 中のCuを化合物として固定化することによ り無害化する方法」について検討する。

2. 研究の目的

(1) Nd を用いた鉄中銅の固定化・無害化

他の元素に対する還元力が強い希土類元

素を用いて Cu-Nd の化合物を形成すること によって、Fe中に微量含まれている Cuを溶 鉄中に固定することを目的とする。

(2) 2 相分離を利用した Fe 中 Cu の除去

Fe-Cu-B系2相分離の詳細調査

過去に当研究室で行われた Fe-Cu-B 系に おける2液相分離現象について詳細に検討す るため、Fe 中 B 濃度の低い領域(1 mass%以 下)に着目し実験を行い、過去の文献と合わせ て Fe-Cu-B3元系における、広い濃度範囲に おいて高精度で利用できる相互作用係数の 算出を行うことを目的とする。

②Fe-Ag間の2相分離を利用したCuの除去

Fe-Ag 間は相互溶解度が非常に小さく、 Fe-Cu-Ag 3元系において広範囲に渡りCuが Fe-rich 相と Ag-rich 相に分配されることに 着目し、Fe-Cu 2 元系の 2 液相分離に最も効 果的であると思われる B を用いて Fe-B 合金 と Ag 間における Cu の分配平衡実験を行い、 Fe-rich 相中 Cu 濃度の低減可能性を検討し た。

(3) 円筒型容器からの液体の排出における 気柱渦生成抑制

2相分離後のCu-rich相(Ag-rich相)を Fe-rich相から分離、排出する際、その末期 に大気がFe-rich相を貫通する自由渦が発生 し、排出速度の低下ならびにFe-rich相の巻 き込みが生じる。渦の発生を抑制できれば2 相の完全な分離が可能となり、排出後の溶鋼 の歩留り改善が期待できる。本研究では、水 モデル実験により、円筒型容器から水を排出 する過程で生じる自由渦を抑制する方法に ついて検討した。

- 3. 研究の方法
- (1) Nd を用いた鉄中銅の固定化・無害化

電解鉄、Cu, Al をアルミナるつぼ(外径 38 mm, 深さ 45 mm, 容量 30 cm³)に入れ、 これをアルミナホルダーに入れた。これを Ar-H₂雰囲気の高周波誘導炉内で溶融しFe-1 mass%Cu-2 mass%Al 合金を作製した。この 試料を再びAr-5 vol%H₂雰囲気の高周波誘導 炉内で加熱融解し、上から Nd を添加した。 炉内は 1873 (±5) K, Ar-5 vol%H₂雰囲気で 10-30 min 保持し、炉内で急冷した。作製し た試料を切断し SEM, EPMA で試料断面を 観察した。

(2) 2 相分離を利用した Fe 中 Cu の除去①Fe-Cu-B 系 2 相分離の詳細調査

電解鉄, 試薬 B をアルミナるつぼ (外径 38 mm, 深さ 45 mm, 容量 30 cm³) に入れ、高 周波誘導炉を用いて Ar-H₂雰囲気中で試料を 溶融し、あらかじめ Fe⁻¹ mass%B 合金を作 製した。Fe⁻Cu⁻B 系平衡実験は、あらかじめ 作製した Fe⁻B 合金と電解鉄をあわせて 10 g と、試薬 Cu 10 g をそれぞれ秤量し、アルミ ナるつぼ(外径 15 mm,内径 12 mm,長さ 100 mm)に入れた。このアルミナるつぼを、 黒鉛るつぼ(外径 42 mm,内径 34 mm,長さ 125 mm)に入れ、1873 K,Ar(99.99%)の炉 に装入し、5 h 以上保持し、試料を平衡させ た。平衡後、炉から取り出し、氷水で急冷し た。得られた試料の Fe⁻rich 相の B, Cu濃度、 Cu⁻rich 相の B, Fe 濃度を、ICP 発光分光分 析装置を用いて分析を行った。

②Fe-Ag間の2相分離を利用したCuの除去 予め作製した Fe-5.0 mass%B 合金と電解鉄 をあわせて約10gと試薬Ag約20g、試薬Cu 約1gを秤量し、アルミナるつぼに入れた。B 濃度は Fe-5.0 mass%B 合金と電解鉄の質量比 により変化させた。そのアルミナるつぼを黒 鉛るつぼに入れ、1873 Kまたは1523 K, Ar 雰 囲気の電気炉内に装入し、5h以上保持して 平衡させた。平衡後、Fe-rich 相中 B, Cu, Ag 濃度および Ag-rich 相中 B, Cu, Fe 濃度の分析 を行った。なお、ここでも 1523 K における 実験では Fe-B 合金が液相になるように Fe-rich 相中 B 濃度を約3 mass%以上とした。 次に Fe-B 合金、電解鉄、Ag の質量比一定の もとで、Cuを 0.1-1 gの間で変化させて同様 の実験を行った。

(3) 円筒型容器からの液体の排出における 気柱渦生成抑制

水モデル実験装置の概要を図1に示す。図 のように、排出口付近に円柱状の物体を配置 している。ノズル先端にゴム栓をつけ、水槽 に高さ h_W =100mm まで水を入れ、攪拌棒を 使用して水全体を反時計回りに旋回させた 後、水表面の初期角速度 ω_0 (rad/s)を測定した。 その直後にゴム栓を取り外し、水を排出させ た。大気が水を貫通する気柱渦が発生した時 の水位 h_s 及び水位 h_W が100mmから15mm になるまでに要した時間 $t_{100\to15}$ (s)を計測した。 円柱の形状及び個数を変化させ、最適条件を 探索した。

図1 水モデル実験装置

4. 研究成果

(1) Nd を用いた鉄中銅の固定化・無害化 図 2 に試料断面の EPMA マップを示す。 Cu の存在する部分に Nd が必ず存在してお り、Cu と Nd が合金を形成していることが 示唆される。また、Cu は Fe 中に微細に分散 しており、このことから Nd を添加すること によって、Cu を Fe 中に固定できることが明 らかとなった。

図 2 Nd 添加による Fe 中 Cu の固定

(2) 2 相分離を利用した Fe 中 Cu の除去

Fe-Cu-B系2相分離の詳細調査

図3に実験結果を過去の当研究室の結果と 共にmol%表示で示す。この結果より、Fe中 B濃度が0.006mass%という低濃度であって も2相に分離することが明らかとなった。

また、溶質元素の活量係数を表示する方法 として Darken の 2 乗形式と Wagner の Taylor 級数展開式が知られているが、これら の式の係数比較を行うことにより(1)式を得、 実験値を代入した結果を図4に示す。

来より Fe 中 Cu, B 濃度の高い範囲まで

図 4 Fe 中 Cu に対する B の相互作用母 係数の決定

適用できる Cu に対する B の 1, 2 次の相互 作用係数が導出された。

 ②Fe-Ag間の2相分離を利用したCuの除去 1873 Kおよび1523 Kにおいて、初期Fe-B 合金、Cu, Ag添加量を固定して、Cu分配比 に及ぼすFe-rich相中B濃度の影響を調べた。 ここで、全量に対するCu濃度は3.2 mass%で ある。

図 5 に分配実験結果を示す。ここで、Cu 分配比 *L*_{Cu}は(2)式で表される。

 $L_{Cu} = [mass%Cu]_{(inAg)}/[mass%Cu]_{(inFe)}$ (2) 図 5 より Cu 分配比は Fe-rich 相中 B 濃度 の増加とともに増大し、また 1523 K におけ る Cu 分配比は 1873 K での実験結果より大き いことがわかる。このことから、低温かつ Fe 中 B 濃度を大きくすることで、分配比が上昇 し、Fe 中 Cu 濃度を低減できることが明らか となった。

- 図5Fe-B合金-Ag間のCu分配比測定結果 ([mass%Cu]_(initial)=3.2).
- (3) 円筒型容器からの液体の排出における 気柱渦生成抑制

設置する円柱物体(高さ 20mm, 直径 40 mm) の個数を変化させた際の気柱の発生水位 hsを 図6に示す。円柱物体を設置しなかった場合、 気柱の発生水位は大きな値となり、ω₀が大き くなるほど大きくなった。円柱物体を設置す るとその発生水位は非常に低減され、物体の 数は1個より2個の場合が効果的であること が明らかとなった。

次に、円柱物体を2個置いた場合の物体高 さを変化させた実験結果を図7に示す。本実 験で使用した装置の場合、気柱の発生高さが 約20mm以下に抑えられ、その高さは円柱物 体の高さで大きな変化はなかった。。

図 6 物体の個数と自由渦発生高さの関係

図 7

物体の高さと自由渦発生高さの関係

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計17件)

- <u>中里英樹</u>、山口勝弘、阿川真吾、田口謙 治、碓井建夫: "1873、1523Kにおける Fe-Cu-BおよびFe-Cu-Ag-B系の2液相分 離", *高温学会誌*、Vol.35, pp.40-44, (2009), 査読有.
- ② <u>Hideki Ono-Nakazato</u>, Kenji Osawa. Kenji Tguchi and Tateo Usui: "Formation Mechanism of Stable Swirling Flow Accompanied with Air-Core in Discharging Liquid through

a Nozzle Settled at the Bottom of Container", Proc. of 3rd International Symposium on Advanced Fluid/Solid Science and Technology in Experimental Mechanics, Tainan, Taiwan, CD-ROM, (2008), 査読無.

- ③ Kenji Taguchi, <u>Hideki Ono-Nakazato</u>, Katsuhiro Yamaguchi and Tateo Usui: "Liquid Immiscibility in Fe-Cu-B-C System", Proc. of The 4th International Congress on the Science and Technology of Steelmaking (ICS 2008), Gifu, Japan, pp. 678-681, (2008), 査読無.
- ④ Tateo Usui, <u>Hideki Ono-Nakazato</u>, Kenji Taguchi and Kenji Osawa: "Prevention of Stable Swirling Flow Formation Accompanied with Air-Core in Discharging Liquid in the Reactor through a Nozzle", Proc. of The 4th International Congress on the Science and Technology of Steelmaking (ICS 2008), Gifu, Japan, pp. 375-378, (2008), 査読無.
- ⑤ <u>Hideki Ono-Nakazato</u>, Shingo Agawa, Katsuhiro Yamaguchi, Kenji Taguchi and Tateo Usui: "Recovery of Iron and Copper by Two Liquid Phases Separation between Fe-B and Ag Phases", Proc. of 7th Japan-Brazil Symposium on Dust Processing - Energy - Environment in Metallurgical Industries, Sao Paulo, Brazil, CD-ROM, (2008), 査読無.
- (6) <u>Hideki Ono-Nakazato</u>, Kenji Taguchi and Tateo Usui: "Prevention Method of Swirling Flow Generation in Discharging Liquid in the Reactor Vessel through a Nozzle", *Journal of the Japanese Society for Experimental Mechanics*, Vol. 8, pp. 147-151, (2008), 査読有.
- ⑦ Hideki Ono-Nakazato, Kenji OSAWA. Kenji TAGUCHI Tateo USUI: and "Formation Condition of Stable Flow Swirling Accompanied with Air-Core in Discharging Liquid in the Reactor Vessel from a Nozzle", Proc. of 2nd International Symposium on Advanced Fluid/Solid Science and Technology in Experimental Mechanics, Osaka, Japan, CD-ROM, (2007), 査読無.
- (8) <u>Hideki Ono-Nakazato</u>, Kenji Taguchi, Tateo Usui and Katsukiyo Marukawa: "Prevention Method of Swirling Flow Generation in Discharging Liquid in the Reactor Vessel", *Journal of the Japanese Society for Experimental*

Mechanics, Vol.7, pp.120-124, (2007), 查読有.

- (9) Hideki Ono-Nakazato, Kenji Taguchi, Kenji 0sawa and Tateo Usui: "Observation of Swirling Flow Generation in Discharging Liquid through a Nozzle in the Bottom of Reactor Vessel", Proc. of the 6th Pacific Symposium Flow on Visualization and Image Processing, Pacific Center of Thermal-Fluids Engineering, Hawaii, USA, pp. 258-262, (2007), 査読無.
- Kenji Taguchi, <u>Hideki Ono-Nakazato</u> and Tateo Usui: "Separation of Iron and Copper-Tin by Using Immiscibility of Fe-Cu-Sn-B System", Proc. of 6th Japan-Brazil Symposium on Dust Processing Energy Environment in Metallurgical Industries, ISIJ, Sapporo, Japan, pp. 34-38, (2006), 査 読無.
- <u>Hideki Ono-Nakazato</u>, Kenji Taguchi, Tateo Usui and K.Marukawa, "Prevention Method of Swirling Flow Generation at the Liquid Discharge from the Reactor Vessel", Proc. of International Symposium on Advanced Fluid/Solid Science and Technology in Experimental Mechanics, The Japanese Society for Experimental Mechanics, Sapporo, Japan, pp. 351-354, (2006), 査読無.
- 12 Kenji Taguchi, <u>Hideki Ono-Nakazato</u> and Tateo Usui: "Liquid Immiscibility in Fe-Cu-B-C System", *ISIJ International*, Vol. 46, pp. 633-636, (2006), 査読有.
- 確 井建 夫、<u>中里 英樹</u>、田口 謙治: "Fe-Cu-B-C系のFeとCuの相分離を利用 したシュレッダーダストからのFe,Cuの 分離・回収に関する基礎的研究",日本 学術振興会製銑第54委員会バイオマ ス・ウェイスト高度利用研究会最終報告 書、pp.91-100,(2006),査読無.
- 任本部分子型、
 任本部分子型、
 任本部分型、
 任本部分型、</li
- (15) <u>Hideki Ono-Nakazato</u>, Kenji Taguchi, Daisuke Kawauchi and Tateo Usui: "Separation of Fe and Sn-Cu Phases in an Fe-Sn-Cu-B System", *Materials Transactions*, Vol. 47, pp. 864-867,

(2006), 査読有.

- 16 Kenji Taguchi, <u>Hideki Ono-Nakazato</u> and Tateo Usui: "Liquid Immiscibility in Fe-Cu-B System", *ISIJ International*, Vol. 46, pp. 29-32, (2006), 査読有.
- (17) Kenji Taguchi, <u>Hideki Ono-Nakazato</u> and Tate Usui: "Recovery of Iron and Copper from Shredder Dust by the Use of Fe-Cu-B System", Proc. of 3rd Japan / Korea International Symposium on Resources Recycling and Materials Sciences, National Institute of Advanced Industrial Science and Technology, Ibaraki2006.01 , Japan, pp. 99-104, (2006), 査読無.

〔学会発表〕(計9件)

- 山口勝弘、<u>中里英樹</u>、碓井建夫: "2乗 形式を用いたFe-Cu-B系の相互作用係数 の導出",日本鉄鋼協会第157回春季講 演大会、2009.3.29,東京工業大学.
- 空田裕介、大澤健仁、<u>中里英樹</u>、碓井建 夫: "円筒容器からの液体の排出におけ る気柱渦生成抑制",日本鉄鋼協会第 157回春季講演大会、2009.3.29,東京工 業大学.
- ③ 空田裕介、大澤健仁、<u>中里英樹</u>、碓井建 夫: "円筒型容器からの液体の排出にお ける気柱渦生成抑制",高温学会平成2 0年度秋季総合学術講演会、2008.12.5, 大阪大学.
- ④ 阿川真吾、<u>中里英樹</u>、碓井建夫: "Fe-B 合金とAg間におけるCu分配比の測定", 日本鉄鋼協会第 156 回秋季講演大会、 2008.9.23, 熊本大学.
- ⑤山口勝弘、碓井建夫、<u>中里英樹</u>: "Fe-Cu-B系の2液相分離に関する熱力 学的考察", 日本鉄鋼協会第156回秋 季講演大会、2008.9.24,熊本大学.
- ⑥ <u>中里英樹</u>: "Fe-B合金とCu, Ag-Cu合金の
 2 液相分離に関する研究", 日本鉄鋼
 協会高温プロセス部会高温物性値フォー
 ラム、2008. 6. 24,東京工業大学.
- ⑦ <u>中里英樹</u>、田口謙治、碓井建夫: "Fe-Cu(-Sn)-B系の相平衡",日本学術 振興会製鋼第 19 委員会反応プロセス研 究会第 43 回研究会、2007.6.7,北海道大 学.
- ⑧ <u>中里英樹</u>、田口謙治、碓井建夫、丸川雄 浄: "気柱渦生成抑制による円筒型容器 内液体の高速排出",日本鉄鋼協会第 153 回春季講演大会、2007.3.29,千葉工 業大学.
- ・中里英樹、田口謙治、碓井建夫、丸川雄 浄: "気柱渦生成防止による円柱型容器 内液体の高速排出法",日本学術振興会 製鋼第 19 委員会反応プロセス研究会第

42 回研究会、2007.2.2, 東京大学.

- 6. 研究組織
- (1)研究代表者
 中里 英樹 (NAKAZATO HIDEKI)
 大阪大学・大学院工学研究科・准教授
 研究者番号:30283716
- (2)研究分担者
- (3)連携研究者