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Visual Question Answering (VQA) is an interdisciplinary field, lying on the
vision and natural language fields, which is recently advanced drastically due to deep learning.
Current techniques for VQA rely on rather a statistics approach, where the distribution of the
training set solely matters. We need to go beyond this to make VQA more practical. Our core research

question is: “ Can VQA systems can answer questions that require inference?” , and we have been
committed to building a system that uses knowledge for visual question answering (knowledge-based
visual question answering; KBVQA), while also exploring an effective video representation.
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Chu et al. (2018) [3]

F1 Prec. Rec.
2 Chu et al. (2018) 84.16 8271  85.67
Word-overlap 61.25 74.15 52.18
Phrase-only 85.66 84.72  86.61
VGP Visual-only (PL-CLC) 57.73 51.86  65.09
Visual-only (DDPN) 66.36 6092  72.87
BoundingBox-overlap (DDPN)  73.43  73.83 73.05
Ours (PL-CLC) 85.10 8336 86.91
Ours (DDPN) 86.48 8581 87.16
Bicycl ist Competitor Ours+BBox (DDPN) 86.50 8492 88.15
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Dataset VQA-Type Domain # Imgs #QAs Answers Vis. Text. Temp. Know.
MovieQA (Tapaswietal. 2016)  Video Movie 6,771 14,944 MCs v v v -
KB-VQA (Wang et al. 2017) KB COCO 700 2,402 Word v - - v
PororoQA (Kim et al. 2017b) Video Cartoon 16,066 8,913 MC;s v v v -
TVQA (Lei et al. 2018) Video TV show 21,793 152,545 MCs v v v -
R-VQA (Luetal. 2018) KB Visual Genome 60,473 198,889 Word v - - -
FVQA (Wang et al. 2018) KB COCO, ImgNet 2,190 5,826 Word v - - v
KVQA (Shah et al. 2019) KB Wikipedia 24,602 183,007 Word v - - v
OK-VQA (Marinoetal.2019) KB COCO 14,031 14,055 Word v - - v
KnowIT VQA (Ours) VideoKB TV show 12,087 24,282 MC,4 v v v v
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