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In these two years, our research has proceeded rather smoothly. We could
publish several results of this project in international peer-reviewed journals. For example,
molecular dynamics simulations and NMR experiments on K48-, K63-, and M1-linked ubiquitin chains
produced intriguing results that well agree with observations by other researchers worldwide, e.g.
in the field of X-ray crystallography. Specifically, various distinct ubiquitin chain conformations
of the same molecule (e.g., a K48-linked diubiquitin molecule) have been reported by different
researchers under different crystallization conditions or in the presence of different binding
proteins. However, we found that all of these molecular states of diubiquitin lie on the same
trajectory in phase-space as sampled by molecular dynamics. The main result of this project is
summarized in our 2021 Biochemistry paper. However, several aspects of this study (especially for
chains other than K48-linked) are yet to be published.
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1. Research background at thetime of the start of thisproject [ ]

Polyubiquitin chains can be conjugated to almost all intracellular proteins. These chains function a
signal tag to specify diverse cellular events such as proteolysis and immune responses. Such a
polyubiquitin chain is formed by the covalent conjugation of individual molecules of the small 76-
amino acid protein ubiquitin via eight distinct types of linkages. Seven of these occur via internal
lysine residues of ubiquitin (K6, K11, K27, K29, K33, K48, K63), whereas one type uses the N-
terminal a-amino group of M 1. Because the tertiary structure of ubiquitin has been known for along
time to be physicochemically extremely stable and rigid, it seemed natural to assume that ubiquitin
moieties in a polyubiquitin chain would be structurally virtually equivalent to one another. Another
reason underpinning this assumption was that ubiquitin-binding proteins containing ubiquitin-
associated (UBA) domains bind with almost equal affinity to each ubiquitin moiety in a polyubiquitin
chain. In stark contrast, ubiquitin-binding proteins containing Npl4-like zinc-fingers or tandem repeat
ubiquitin- interacting motifs recognize specific orientations and distances between the successive
hydrophobic surfaces of the ubiquitin moieties. For this reason, these types of proteins are able to
exhibit a strong polyubiquitin-linkage specificity. In addition, some UBPs such as deubiquitinating
enzymes (DUBs) and antibodies directly associate with both an (iso-)peptide linkage and the
hydrophobic surfaces of the ubiquitin moieties.

Moreover, due to the high rigidity
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fluctuations that are not directly related to the closed-to-open transition of the two ubiquitin moieties
in diubiquitin. Strikingly, these newly identified heterogeneous structural fluctuations may be linked
to an increase in susceptibility to phosphorylation by PINK1. Coupled with the fact that there are
amost no differences in static tertiary structure among ubiquitin moieties in a chain, the observed
subunit-specific structural fluctuations may be an important factor that distinguishes individual
ubiquitin moieties in a chain, thereby aiding both efficiency and specificity in post-translational
modifications.

2. Research objectives| ]
Among the eight reported types of polyubiquitin chains (see point 1), polyubiquitin chains linked via




lysine residue 48 of one ubiquitin and the C-terminal carboxy-group of another ubiquitin (hereafter:
K48-linked chains) are the most abundant in cells. In addition, both their structural properties and their
physiological roles in ATP- dependent protein degradation have been extensively studied. The first
published crystal structure of K48-linked Ub2 had captured the two ubiquitin moietiesinteracting with
each other via their respective 144-centered hydrophobic patches, thereby forming a “closed”
conformation (Figure 1a, left). In later studies, this closed conformation had also been confirmed to
exist in agueous solution and additionally, in alonger chain: K48-linked tetraubiquitin. However, this
poses a problem when trying to reconcile structural biology with physiological events: in these closed
structures, the 144-centered hydrophobic surfaces appear to be virtually inaccessible, athough many
physiological signaling processes strictly require their recognition (i.e., being non-covalently bound)
by UBPs. A possible solution to this dilemma appeared to be that because ubiquitin moietiesin achain
are connected by flexible linkers, K48-linked polyubiquitin chains are thought to adopt multiple
conformations, much like “beads on a string”. Indeed, more recent X-ray crystallography and NMR
studies have reported various conformations of K48-linked Ub2 with different interdomain angles and
distances; in some conformations, the 144-centered hydrophobic surfaces are more accessible (Figure
1a, middle; 1b) and in fact, K48-linked Ub2 is reported to be in equilibrium between the closed and
open conformations in solution. We considered, therefore, that ubiquitin-binding proteins might
recognize features of the dynamic structural properties of a K48-linked polyubiquitin chain to exert
subunit preference (Figure 1a, right; 1c).

To test this hypothesis, in this study we set our major research objective to characterize the
structural dynamics of K48-linked Ub2, as this molecule represents the minimal structural and
recognition element of K48-linked polyubiquitin.

3. Research methods|[ ]
Main methods for this research were recombinant protein expression in bacteria and purification,

NMR spectroscopy, and molecular dynamics simulations. Regarding protein sample preparation,
human ubiquitin, and its mutants K48R and G75A/G76A were expressed in Escherichia coli strain
BL21(DE3). 15N-selective isotope labeling of the distal or proximal subunit of Ub2 was achieved by
expressing the respective ubiquitin subunits in either unlabeled LB media or 15N-labeled M9
minimum media containing 99% 15N-Iabeled ammonium chloride. Purification of ubiquitin was done
as follows: first, ubiquitin was purified by ion exchange chromatography using a sample buffer
consisting of 50 mM sodium acetate (pH 4.5) and an elution buffer consisting of 50 mM sodium acetate
(pH 4.5) and 250 mM sodium chloride. Next, after cation exchange chromatography, the protein was
further purified by size-exclusion chromatography. Diubiquitin samples with selective distal and
proximal 15N-labeling were prepared by enzymatic reaction of unlabeled and 15N-Iabeled ubiquitin
subunits as previously described. K48-linked Ub2 was enzymatically synthesized by the E1 (mouse
UBA1) and E2 (human E2-25K) enzymes. To compare the dynamics between the samples, a control
sample of wild-type monoubiquitin (hereafter, Ubl) was aso prepared. The final NMR samples were
either 1 mM Ubl or 1 mM Ub2 in a buffer consisting of 20 mM potassium phosphate, pH 6.8, 1 mM
EDTA, 20 mM potassium chloride, and 5% D-0.

Asfor NMR spectroscopic experiments, we conducted all our experiments on an Avance Il
700 MHz instrument (Bruker BioSpin Co.). Thisinstrument was equipped with a5 mm 15N/13C/1H



z-gradient triple resonance cryogenic probe. After measurement, the acquired NMR data were then
processed by using the program NMRPipe. Chemical shift referencing using the methyl proton signal
of 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) was performed for 1H. Subsequently, 15N
chemical shifts were referenced indirectly with respect to DSS. Further analysis was conducted in
CcpNmr Analysis and NMRView. All backbone amide HSQC cross-peaks of each type of Ub2 were
assigned to the individual amino acid residues from 15N-edited TOCSY and NOESY spectra based
on signal assignments of wild-type Ubl in the Biological Magnetic Resonance Bank (BMRB) database
(entry 6457).

Main experimentsfor in-depth NMR spectroscopic analysiswere (1) differentiation between
linear and nonlinear amide proton chemical shift temperature dependence, (2) thermodynamic analysis
of curvature in chemical shift temperature dependence, (3) relaxation dispersion; molecular dynamics
simulations of ubiquitin in GROMACS under the AMBER99sb-ILDN forcefield were carried out to
supplement these experimental data with canonical parameters of temperature, ion concentration, MD
timestep, etc..
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orientation and distance due to the interaction between the two ubiquitin moieties (Figure 1b, blue
circles). By contrast, Ub2 adopts diverse conformations in the extended (open) state, and the 144 Ca
atoms of the two ubiquitin moieties are spaced more than 15 A apart (Figure 1b, red circles). Notably,
in the bound form, the orientation and distance differ depending on the UBP (Figure 1b, filled circles),
indicating that each UBP selects a specific conformation of Ub2 for binding. In addition, a per-residue
analysis of the interface between Ub2 and each UBP indicated that both the interface area and the
residues contributing to the interface differ between the distal and proximal subunits (hereafter, Ubdis
and Ubprox, respectively) in most Ub2-UBP complexes (Figure 1c). On the one hand, this observation
suggested that UBPs recognize a specific relative position of the two successive hydrophobic surfaces
of K48-linked Ub2 (conformational-selection mechanism); on the other hand, these data imply that
each UBP may aso induce conformational rearrangement of K48-linked Ub2 to fit into the unique
binding surface of the UBP (induced-fit mechanism).



Nevertheless, it remained unclear how UBPs such as PINK1 preferentially associate with a specific
ubiquitin moiety in Ub2 without using the subunit-selective recognition. To investigate whether there
arevariationsin the static structure of the ubiquitin moietiesin Ub2 and Ub1, we examined differences
in the reported tertiary structures of the two ubiquitin moieties in K48-linked Ub2. Structura
alignment showed that the root-mean-square deviation (RMSD) in the main chain (Ca atoms) of the
ubiquitin moieties was less than 1 A for Ub1 and Ubdis and for Ub1 and Ubprox (Figure 1d). This
result indicated the absence of distinct differencesin static tertiary structures between the two ubiquitin
moieties in Ub2, suggesting that any subunit-specific reactions catalyzed by enzymes such as PINK 1
must arise from other structural characteristics of the two Ub2 moieties.

To determine whether the subunit-asymmetric conformational fluctuations play a role in
subunit-specific recognition of K48-linked Ub2 by UBPs, we investigated the subunit preference of
PINK1 for phosphorylation of K48-linked Ub2. Although phosphorylation of K48-linked diubiquitin
and tetraubiquitin was previously reported, the possibility of a subunit preference of PINK1 for K48-
linked polyubiquitin had not been examined in detail. Based on the structure of Ubl in complex with
PINK1, the loop between the 310-helix and the B5 strand of Ubl needs to be relatively exposed to
solvent to allow phosphorylation at S65 (Figure 2a). Notably, one of the clusters of residues for which
we could demonstrate Ubprox-specific structural fluctuations was located on this loop; therefore, we
hypothesized that the fluctuations might be related to the phosphorylation susceptibility of Ub2.

To compare the phosphorylation susceptibility between Ubdis and Ubprox in K48-linked
Ub2, we monitored the phosphorylation of the two subunits simultaneously by real-time NMR.
Althoughthe 1H—-15N cross-peaks of ailmost all residues overlap perfectly between Ubdisand Ubprox,
the respective cross-peaks of A46, which is spatially close to S65 (approximately 8 A; Figure 2b), are
isolated from one other by using two ubiquitin mutants: UbK48R and UbG75A/G76A (Figure 2b).
Note that these mutants were used to prepare K48-linked Ub2 and that did not influence the structure
of ubiquitin based on the observed 1H—-15N cross-peaks. The amide cross-peak of A46 undergoes a
large shift upon phosphorylation at S65 (Figure 2c), enabling us to individually trace the
phosphorylation of Ubdis and Ubprox in fully 15N-labeled K48-linked Ub2 in the same experiment
by measuring the signal decays of A46 of the unphosphorylated ubiquitin moieties (Figure 2d, upper).
Although it is also possible to analyze the increasing signals of phosphorylated Ub2, phosphorylated
Ubl isreported to exist in atwo-state equilibrium; therefore, we considered that the real-time profiles
of generated phosphorylated Ub2 would be more complicated to analyze and interpret quantitatively.

Notably, the real-time NMR analysis showed that Ubprox undergoes phosphorylation faster
than Ubdis (Figure 2d, upper, and Figure 2e, upper). As a control experiment, we analyzed
phosphorylation of the Ubl components of our Ub2 sample. UbK48R underwent phosphorylation
faster than UbG75A/G76A (Figure 2d, lower, and Figure 2e, lower). This might be a possible side
effect of the point mutations because K48 of monoubiquitin was previously shown to be one of the
residues participating in the interaction with PINK1. Taken together, these data suggest that the
Ubprox-specific structural fluctuations identified on the loop between the 310-helix and the 5 strand
significantly enhance its phosphorylation susceptibility (relative to Ubdis) because the
phosphorylation susceptibility of the individual Ubl components was inverted in Ub2. Such a
phenomenon is consistent with the requirement that the side chain of S65 must be exposed to the
solvent and to fit into the active site of PINK 1 for phosphorylation.
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