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Deep neural network models are inherently complex, which hinder us from
inferring the underlying mechanisms or the evidences that the models rely on when making decisions.
It is therefore essential to develop "explanation methods™ that can reveal such mechanism or
evidence so that we can understand the decisions of the models. In this research, we focused on a
unification of the popular explanation methods, the explanation by important features and the
explanation by similar/relevant instances. Through the research, we deepen and improved the
methodologies for each explanations individually, and we then developed a unification framework that

can taken into account the advantages of the both of the explanations.
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